
TIBCO Spotfire Miner™ 8.2
Java/C++ Extensibility

November 2010

TIBCO Software Inc.

IMPORTANT INFORMATION

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE MINER LICENSES). USE OF THIS
DOCUMENT IS SUBJECT TO THOSE TERMS AND
CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO
BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire Miner,
TIBCO Spotfire S+, Insightful, the Insightful logo, the tagline "the
Knowledge to Act," Insightful Miner, S+, S-PLUS, TIBCO Spotfire
Axum, S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics,
S+NuOpt, S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS
Graphlets, Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample,
TIBCO Spotfire S+ Server, TIBCO Spotfire Statistics Services, and
TIBCO Spotfire Clinical Graphics are either registered trademarks or
trademarks of TIBCO Software Inc. and/or subsidiaries of TIBCO
Software Inc. in the United States and/or other countries. All other
product and company names and marks mentioned in this document
are the property of their respective owners and are mentioned for
2

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

Copyright © 1996-2010 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY
BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

Reference The correct bibliographic reference for this document is as follows:

TIBCO Spotfire Miner™ 8.2 Java/C++ Extensibility, TIBCO Software
Inc.

Technical
Support

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.
3

Important Information 2

Overview 6

Extension Files 7
Default Extension File Names 8
Explorer IML Files 9
Java Files 11
C++ Library Files 12
Image Files 12
Help Files 12
Manuals 12
extension.xml Files 13

Development Tools 15
Java Compiler 15
C++ Compiler 15
Optional Tools 16

Architecture Features 17
XML 17
Pipeline 17
Data Types 17
Output Caches 18
Node State 18
Client-Server 19

Infrastructure Java Classes 20
XML Property Objects 20
Column Meta-Data 20

Graphical User Interface Classes 21
Overview 21
Activity Node Model 21

JAVA/C++ EXTENSIBILITY 1
4

Special Interfaces 22
Node Dialog 24
Viewers 24

Engine Classes 25
Overview 25
General Methods 25
Constructors 25
Initialization 25
Output Meta Data 26
CNKProc Objects 26

Example: Copying Inputs 28
Simple Java Version 28
Simple C++ Version 32
Extended Java Version 38

The TIBCO Spotfire Pipeline 50
Overview 50
C++ Libraries 54
C++ Classes 55
5

OVERVIEW

Spotfire Miner is written in Java and C++. The graphical user
interface and some computational components are in Java. The
underlying pipeline architecture and other computational
components are in C++.

The same techniques that TIBCO uses to create nodes in Spotfire
Miner can be employed by users to create additional nodes. Creating
nodes in Java or C++ requires a much greater level of programming
expertise than creating nodes with Spotfire S+. The target audience
for this material is a Java programmer with some experience using
Swing. For C++ nodes, the programmer should also have experience
with numerical programming in C++.

The first section of this chapter details the various items that need to
be created to add a component to Spotfire Miner. The next section
discusses the architecture of the graphical user interface classes used
to create and coordinate property dialogs, viewers, and computations.
Later sections discuss writing the computational classes using Java or
C++.

To create new components for Spotfire Miner, you will need to be
familiar with a variety of Java classes. Javadoc for the classes
discussed in this document is available in the doc/javadoc directory.
6

EXTENSION FILES

The Spotfire Miner software is implemented using a large number of
Java and C++ object files, image files, etc, stored in various
subdirectories within the Spotfire Miner installation directory. It is
possible to extend Spotfire Miner by adding additional files to various
subdirectories, but it is difficult to keep track of the multiple files
implementing an extension. Spotfire Miner supports an extension
mechanism where all of the files implementing an individual
extension can be placed within a single new directory. A single
extension may implement more than one node; normally, an
extension would contain a set of related nodes.

When Spotfire Miner starts, it looks for a directory named
extensions within the Spotfire Miner installation directory. If this
directory exists, each subdirectory under extensions is processed to
load each extension. Next, Spotfire Miner looks for a directory
named extensions in the user’s work directory and processes any
subdirectories of this as additional extensions. (The user’s default
work directory is depends on the operating system.) Extensions are
loaded from both places so that stable extensions to be used by
multiple users can be defined once (in the Spotfire Miner installation
directory), and users can develop new extensions in their own
directories.

Extensions are only processed when Spotfire Miner is started. There
is currently no way to dynamically add or remove extensions from
Spotfire Miner while it is executing.

To create an extension, create a new subdirectory within the
extensions directory (in the Spotfire Miner installation directory, or
the user work directory). The name of this subdirectory is not
important; it is useful to give it a name that identifies the extension,
but the directory name is not otherwise interpreted. All of the files
implementing the extension should be stored within this directory.
This would normally include:

• An XML file describing the extension nodes.

• A small icon file for each node, used in the Explorer pane.

• A large icon file for each node, used in the worksheet.

• A Java jar file containing the Java class files.
7

• Possibly a Windows DLL with compiled C++ code.

• Possibly help files in a format such as compiled HtmlHelp

• Possibly documentation in a format such as PDF

The following subsections describe how these files should be named,
and how these files are used to implement an extension.

Default
Extension File
Names

Many extensions only require a few files. In order to make it easy to
create an extension, Spotfire Miner looks for certain default file
names. If the user wants to use different file names or an extension
requires multiple C++ libraries or Java jar files, this can be done by
creating an extension.xml file in the extension directory describing
the files in the extension, as described below.

In the simple case, when there is no extension.xml file in the
extension subdirectory, the files in this subdirectory are interpreted as
follows:

• If a file named extension.iml exists, it should be an XML file
defining an Explorer tab containing one or more nodes.

• If a file named extension.jar exists, it is used as the Java jar
file containing the Java object code for the extension nodes.

• If a file named extension.dll exists, it is loaded as a C++
library file.

• The subdirectory is added to the search path for resolving
image icons, so any image files in the subdirectory can be
accessed from the XML defining the nodes.

Therefore, a simple extension might be defined by the following
directory structure in the Spotfire Miner installation directory or user
work directory:

extensions\
 my_extension\
 extension.iml
 extension.jar
 extension.dll
 my_small_icon.gif
 my_large_icon.gif
8

In this case, the extension subdirectory is named my_extension, and
the extension uses two gif files.

Explorer IML
Files

An Explorer IML file is an XML file that describes one or more
Spotfire Miner nodes that appear within an Explorer tab. The XML
tags are described in the IMML_3_0.dtd file in the xml directory.
This directory also includes several IML files used for the default
Explorer tabs.

An IML file defines the list of nodes in an Explorer tab with XML
such as:

<?xml version="1.0" encoding="UTF-8"?>
<ExplorerTree>

<ExplorerPage labelText="Programming Examples">
<ExplorerNodeList>

<ExplorerFolder expanded="true"
 labelText="Copy Columns">

<ExplorerNodeList>
...ActivityNode Definitions...

</ExplorerNodeList>
</ExplorerFolder>

</ExplorerNodeList>
</ExplorerPage>

</ExplorerTree>

Each component in the Explorer tab is described with an XML
ActivityNode object. The XML description contains:

• Name of the main computational engine Java class.

• Name of the main graphical user interface Java class.

• Number of inputs

• Number of outputs

• ID number for the node (if in a worksheet)

• Current label text for the node

• Default label text for the node (also used as the help topic)

• Name of GIF file with 16 by 16 icon used in Explorer

• Name of GIF file with 70 by 70 icon used on worksheet
9

• x-position (if in a worksheet)

• y-position (if in a worksheet)

• Property values set in the node property dialog
10

For example, the XML for the Correlations node in the Explorer
pane is:

<ActivityNode
 engineClass=
 "com.insightful.miner.CorrelationsEngineNode"
 guiClass=
 "com.insightful.miner.CorrelationsNodeModel"
 numInputs="1"
 numOutputs="1"
 id="" >

 <DisplayInfo labelText="Correlations"

 defaultLabelText="Correlations"

 smallIcon="correlation_small.gif"

 largeIcon="correlation_large.gif"

 x="0"

 y="0" />

 <ArgumentList>

 <XTProps>

 <Property name="useGlobal" value="true" />

 <Property name="useCache" value="global" />

 <Property name="correlationColumns" value="" />

 <Property name="correlation" value="true" />

 <Property name="covariance" value="false" />

 </XTProps>

 </ArgumentList>

</ActivityNode>

XML describing a new node can be created in either a simple text
editor such as Notepad or a special XML editor such as XMLSpy.
The easiest way to get started on creating an Explorer IML file is to
copy xml\DefaultExplorer.iml to another name, and edit the file to
include your component descriptions.

Java Files For most new components, it is necessary to write Java code
implementing the new component. This code should be compiled
with a Java compiler and placed in a Java archive (jar) file.
11

If your new components are implemented entirely using S-PLUS
script nodes, and you have no special property dialogs or viewers
then the jar file is not necessary.

C++ Library
Files

C++ code used in computation should be compiled into one or more
DLLs. No C++ files are needed if the computations are performed
entirely in Java or Spotfire S+.

Image Files Each component will need a small icon image that is used in the
Explorer pane and a large icon image that is used on the worksheet.
These images are respectively 16 by 16 pixels and 70 by 70 pixels.
They are stored as gif files, which is Java’s preferred format for storing
icon images. These files are referenced by name in the Explorer IML
file.

These images can be created using a wide variety of paint programs.
One approach is to first create the image as a bitmap using a tools
such as the Microsoft Visual Studio resource editor, and then convert
the bitmap to a gif.

Help Files It is always a good idea to provide documentation to users describing
how the new components work.

Help files typically describe the properties dialog and viewer for each
component. The help files can be written in HTML and compiled
into an indexed help set using platform-specific tools.

You can compile the HTML files into an HtmlHelp file using
Microsoft HtmlHelp Workshop. This tool is available for free from
www.microsoft.com.

Spotfire Miner does not attempt to integrate help for new nodes into
the main Spotfire Miner help system. Instead, the new node’s
properties dialog code will need to implement an onHelp() method to
display the appropriate help file when the dialog’s Help button is
pressed.

Manuals A manual usually describes how each component is used, along with
examples of its usage and a description of the algorithms it employs.
A good cross-platform format for documentation is Adobe PDF.
Documentation could also be written in Microsoft Word, HTML, or
even a plain text file.
12

extension.xml
Files

If the file extension.xml exists within an extension subdirectory, it
must be an XML file that describes exactly which files compose the
extension. This allows extension files with arbitrary names (other than
extension.jar, etc), or multiple Java jar and library files, as well as
some other specialized features.

An extension.xml file is exactly like an XTProps object file. Here is
an example:

<?xml version="1.0" encoding="UTF-8"?>
<IMML version="3.00">

<XTProps>
<Property name="jarFile" value="“>

<Property name=”copy.jar" value=”” />
<Property name=”copy2.jar" value=”” />

</Property>
<Property name="libraryFile" value="copy.so" />
<Property name="explorerFile" value="copy.iml" />

</XTProps>
</IMML>

Each top-level property (like jarFile, libraryFile) can have one or
more values. If there is only one value, it can be specified in the same
<Property> clause, as with the libraryFile and explorerFile
peoprties above. If a property have multiple values, they are listed in
subproperties, as with the jarFile property above.

Most of the property values are file names. Each file name may be an
absolute file, or a file name relative to the extension subdirectory. The
special file name “.” stands for the extension subdirectory itself.

The property names recognized are:

• explorerFile: Value is one or more Explorer IML files. Each
IML file defines a new Explorer tab with one or more nodes.

• jarFile: Value is one or more Java jar files containing code
for the extension. One or more of the values may be a
directory, in which case the directory itself is used to search
for Java .class files for individual classes. For example, if an
extension only used the single Java class temp in the default
package, one could put the class file temp.class in the
extension subdirectory, and specify the jarFile property as
“.”. This may be useful during development.
13

• libraryFile: Value is one or more C++ library files that is
loaded when the extension is processed.

• imageDirectory: Value is one or more directories that will be
searched for image gif files for icons, etc. If an extension has
many image files for many nodes, it may be convenient to put
them in an images subdirectory, and specify that this
property valuea as “images”. The image directories are
searched after the system image directories, so it is prudent to
use unique image files names that won’t conflict with the
system image files.

• jniDirectory: Value is one or more directories that is used
when executing the Java System.loadLibrary(name) method
to dynamically link code that can be called directly via Java
JNI. The files specified by the libraryFile property are not
automatically linked via Java JNI.

• initExtensionClass: Value is one or more fully-specified
Java class names (including packages, if it is not a class in the
default package). After all of the library files and Java jar files
are processed, each of these classes is initialized by calling the
Java static method “void initExtension(String
extensionName, String extensionDirPath)” on the class (if
this class and method is defined), passing the name of the
extention subdirectory within extensions and the full
pathname of this extension subdirectory. This initialization
routine can do whatever linking and loading that is necessary.
It may be useful to save the extension subdirectory path in a
global variable, for future use.
14

DEVELOPMENT TOOLS

You will need Java and possibly C++ compilers to create new nodes.

Java Compiler To compile the Java code, you will need a Java compiler that supports
version 6 of the Java SE platform.

Sun’s version of the JDK is available from:

http://java.sun.com/javase/6

Java Classes The Spotfire Miner distribution includes a copy of Sun’s Java
Runtime Environment (JRE) version 6. This is in the directory:

splus/java/jre

It is placed in the same location as it would be in Spotfire S+ for
consistency between the Spotfire S+ and Spotfire Miner products.
Some of the Spotfire S+ Connect/Java code currently relies on the
JRE being in this particular location relative to the main Spotfire S+
directory.

The Spotfire Miner Java archive (jar) file and related jar files are in
the directory:

splus/java/jre/lib/ext

The Miner.jar file in this directory will need to be specified in the
classpath of the JDK so the Spotfire Miner and pipeline classes can be
found. Other jar files from this directory used by the Spotfire Miner
classes will also be required: you should add all of the jar files that are
not included in your JDK.

C++ Compiler If you are using C++ to perform computations, you need Microsoft

Visual C++®6.0.

Include Files The include files for the C++ pipeline classes in cnkbase are in the
include directory in the Spotfire Miner distribution.

Lib Files Debug and release versions of the cnkbase.lib file are available in
Debug and Release subdirectories of the lib directory.
15

Optional Tools While the compilers are the only tools strictly required for developing
new nodes, we use some additional tools as a standard part of Spotfire
Miner development. Developers of new nodes may find that using
these or similar tools significantly increases their effectiveness.

Source Control If you are doing serious development, it’s highly recommended that
you use a source control system. This allows you to save revisions of
your work as you go, with the ability to track changes, back out
changes, and merge concurrent changes by multiple developers.

Build System The multiple steps involved in compiling Java code, compiling C++
code, and packaging the pieces up for distribution can get repetitive.
These tasks can be invoked automatically from a Windows batch file.
A preferable cross-platform solution is to use a build system such as
the open-source product Ant:

http://ant.apache.org

This is the build system we use for Spotfire Miner.
16

ARCHITECTURE FEATURES

The architecture for Spotfire Miner has a number of key features that
are important for understanding how the application works. This
section points out these features.

XML The product relies heavily on XML for storing and exchanging
information. XML is used as the storage format for worksheets,
model information, default settings, and other external files.

The initial implementation of Spotfire Miner also used Java XML
objects internally. These have been replaced with usage-specific data
structures for improved efficiency.

Pipeline Spotfire Miner’s computational engine is designed around a rich
pipeline architecture. The pipeline is a C++ infrastructure for passing
buffers of data between analytic components. The components
created in the graphical user interface map directly to related engine
computational components. This is discussed further in the section
The TIBCO Spotfire Pipeline on page 50.

Data Types The pipeline (and the product in general) knows about four data
types: continuous, categorical, string, and date.

Continuous

Continous columns are used to represent any sort of numerical data,
and are stored as double values.

Categorical

Categorical columns are used for values falling into a finite set of
categories, such as True/False or Small/Medium/Large. They are
stored as integer codes into a table of string labels. The string labels
are used for display.

String

String columns are used for informational columns such as names or
addresses that do not represent categories and are not used in
computations.
17

Date

Date columns are used to represent dates and times. They are stored
as a long representing the number of milliseconds since an origin of
January 1, 1970. This is the same origin used by Java. A string
representation of the time is used for display. Options under
Tools:Options specify the default date formats for reading and
displaying date values.

Output Caches The pipeline is designed to pass blocks of data between components,
rather than passing all of the data at once. It is this capability that
allows the product to scale to handle a very large number of rows of
data.

Global and component level settings are available to determine
whether a copy of the data is stored for each node output. By default,
each computed output has a corresponding copy of the data in an
output cache file.

If all of the computations can be performed in a blockwise fashion
with a single pass through the data, all of the data can be passed from
node to node without storing the values. This would be the case in a
network containing a series of Read Text File, Create Columns,
and Write Text File nodes. The advantage of not caching output
values is a savings in file space usage.

The advantage of caching values is that it provides greater
interactivity. Additional components can be hooked to an output and
executed without having to recompute the previous component
outputs. The data at the output can also be viewed in the viewer.
This interactivity is the reason the product caches node outputs by
default.

Some computational components cannot operate in a blockwise
fashion with a single pass through the data. For example, logistic
regression needs to make multiple passes through the data as it
performs numerical optimization. For this type of node, the
preceding output caches corresponding to its inputs will be created
regardless of the cache settings.

Node State Each node is always in one of three states: created, configured, or
computed.
18

Created

A created node has been created and possibly linked to other nodes,
but does not have all of its required property values specified. The
user needs to provide extra information in the corresponding
property dialog before the node can be executed. This state is
indicated by a red status indicator.

Configured

A configured node has all required inputs linked to other nodes, and
all of its required properties set. It is ready to be executed. This state
is indicated by a yellow status indicator.

Computed

A computed node has been executed successfully, and has valid
results. The node has up-to-date view information and it can be used
in operations such as Create Filter, Create Predictor, and
Generate PMML.

Client-Server Spotfire Miner is designed to support cross-platform client-server
configurations. A common scenario would be to create an Spotfire
Miner worksheet on the desktop, deploy it to a Windows or UNIX
server, where the Spotfire S+ engine performs the analysis.

User-written classes will need to maintain this separation between the
client and server classes, and communicate information via XML. In
particular, the Java engine-side classes can not create arbitrary Java
objects and then pass these objects to client-side classes. Instead, any
information constructed by the engine should be represented as
XML. The Spotfire Miner classes include methods for transferring
XML objects between the client and server.
19

INFRASTRUCTURE JAVA CLASSES

Some important classes for storing and exchanging information are
XTProps for storing property information and XTMetaData for storing
column metadata. The classes discussed in later sections use these to
communicate information.

XML Property
Objects

The XTProps class provides a flexible data structure for storing name/
value pairs, with the additional capability of elements having child
elements. This corresponds to the XTProps element in our XML.
The parties using the properties must agree on how to interpret the
items. Methods are available to get and set properties, and to read
and write the properties as XML.

Column Meta-
Data

Column metadata consists of column name, type, role, and additional
information depending on the column type. Continuous columns
have a mean, min, max, standard deviation, row count, and missing
value count. Categorical columns have category labels and counts.

The column name, type, and role information can be gathered before
all of the data has been read. The other summaries are only available
once the node has been executed.

This information is stored in an XTMetaData object. This class has
methods for getting and setting metadata values, and reading and
writing the metadata as XML.
20

GRAPHICAL USER INTERFACE CLASSES

Overview Spotfire Miner is structured as a client/server application. Each
component such as a Read File node has a corresponding
ActivityNodeModel object on the client, and an EngineNode object on
the server.

The ActivityNodeModel keeps track of the node properties and reacts
to requests to check the node status, show the properties, and show
the viewer.

The EngineNode gets the properties from the ActivityNodeModel, gets
data from the pipeline, does the actual computation, outputs data to
the pipeline, and stores any necessary view information in a standard
location that ActivityNodeModel can access.

The ActivityNodeModel will typically have helper classes that are
used to show a properties dialog and perhaps a custom viewer.

A key element of the architecture is that any information needed by
the engine is stored in an XML structure that can be retrieved from
the ActivityNodeModel, and any information needed by the
ActivityNodeModel for viewing results is stored in an XML cache file
on the engine. Direct method calls between the client and server
classes can not be used as this will not work in a client/server
environment.

Activity Node
Model

Each type of node is completely described in the XML description of
the node in the Explorer or a worksheet. The application creates an
ActivityNodeModel by finding the appropriate class name from the
node’s XML description and using reflection to instantiate a new
object initialized based on the other elements in the XML
description.

Typically a new class that extends ActivityNodeModel will be created
for each new type of node. For instance, the Read Text File node
uses a ReadTextFileNodeModel.

The important methods that are typically overridden are the methods
to check the state of the node, show the properties dialog, and show
the viewer. Model nodes override additional methods used for
prediction, PMML generation, and/or column filter creation.
21

Constructors The constructor method is typically empty. When the constructor is
called, the node properties have not been initialized. Any subclass
initialization that depends on the node properties should be
implemented by overridding the initializeNodeModel method,
which is called after the properties are set.

 public ReadTextFileNodeModel() {
 }

General Methods This class has a wide variety of methods that are used by the
application to find out about the node. For most of these, the default
implementation is used. Exceptions are discussed in the following
subsection.

When overriding methods, it’s often necessary to get information on
the current node properties. The method getXTProps() returns this
information.

Check Properties The isPropertiesValid() method returns a boolean indicating
whether all of the required properties are specified. This method will
usually check the XTProps object containing model information to
determine whether additional information is needed. This method is
almost always overridden.

Display Dialog The showPropertiesDialog() method displays the properties dialog
for the node. Typically this will construct a dialog passing the
XTProps object to the dialog’s constructor, and show the dialog. The
dialog gets current settings from the properties object and puts final
settings back into the properties object. This method is almost always
overridden.

Show Viewer The showView() method displays the viewer for the node. By default,
the Table View is presented. This method is only overridden if the
node has a custom viewer. Viewers should be non-blocking.

Special
Interfaces

Every node has the ability to display a property dialog, execute, and
display a viewer. In addition, some nodes support additional menu
item operations such as Create Predictor, Create Filter, and
Generate PMML. The ActivityNodeModel indicates that it can
support this type of functionality by implementing the appropriate
interface.
22

Column Filter
Generator

Some nodes are able to create a Filter Columns node where the
columns selected are determined based upon the node’s
computational results. These include Correlations, Linear
Regression, and Regression Tree.

The node supports this functionality by implementing the
ColumnFilterGenerator interface. This interface has a single
method:

public String[] getFilterColumnsToExclude()

This method returns an array of the columns that the filter should
exclude. Useful helper tools are available in the ColumnFilterTools
class. In particular, this class provides support for launching the
standard Column Filter Specification dialog.

PMML Generator The model nodes built into Spotfire Miner are all able to create a
Predictive Model Markup Language (PMML) description of their
model. PMML is an XML standard for describing data mining
models. For models such as Principal Components that don’t have
a definition in PMML, an alternate XML description is produced.

A node indicates that it supports PMML generation by implementing
the PMMLGenerator interface. This interface has a single method:

void writePMML(FileOutputStream str)

The PMML generation in Spotfire Miner is typically performed by
taking the XML representation of the model and transforming it
using XSL. This is done using the applyXSLTransform() method in
XMLTree.

Predictable Node
Model

Model nodes such as Linear Regression can generate a Predict
node that can get predicted values for new data. These nodes extend
PredictableNodeModel. An object of this type can be used in the
constructor for a Predict node.

Currently, the Predict node classes have a lot of knowledge in their
methods regarding how to predict for the various kinds of models. As
this information is in the Predict node rather than the specific
model’s classes, it isn’t possibly to add a new model without adding
new code to the PredictEngineNode and PredictNodeModel. In the
future we may change these methods to use reflection and invoke
code in the specific model classes.
23

Node Dialog The user has great latitude in how the node’s properties dialog is
implemented. In the application each node has its own class
extending NodeDialog. Information is passed between the dialogs
and the node model via the node model’s XTProps. This mechanism
is displayed in the example in section Extended Java Version on page
38.

Viewers The application uses a wide array of viewers. The default viewer is
the Table View. Some nodes have custom Java viewers. For other
nodes, HTML is displayed in Internet Explorer or Netscape using the
utility class HtmlFrame.
24

ENGINE CLASSES

Overview For each type of node, there is a class extending EngineNode that is
responsible for providing metadata to the activity node model and
coordinating the computations when the node is executed.

The actual computation will be performed by methods in the
EngineNode class for a Java-based computation, or in a C++ class for
a C++-based computation. Coordination between the pipeline, the
EngineNode, and other classes performing the computation is handled
by a CNKProc object.

It is possible for multiple activity node model classes to use the same
engine node class. For example, several of the S-PLUS related nodes
all use the SplusScriptEngineNode class. Engine node code can also
be shared by having multiple classes extend a parent class that does
most of the computation for that family of nodes.

General
Methods

The EngineNode class has a wide variety of useful utility methods.
These methods typically are not overridden. Exceptions are
discussed in the following subsections.

The getNodeProperties() method is useful for determining the
properties specified for the node.

The getInputMetaData() and getOutputMetaData() methods are
useful for getting information about the inputs and outputs of the
node.

Constructors The constructor is typically a single no-argument constructor:

public ReadTextFileEngineNode() {
}

Initialization Actual initialization is performed in the procCreate() method. This
is where the CNKProc object for the node is created. This initialization
is performed every time the node is executed. This method is a good
place to initialize any class member variables and to print any initial
messages regarding the computations the node will be performing.
25

Output Meta
Data

The calculateOutputMetaData() method is called to determine the
names and types of the output columns. The pipeline takes care of
computing the numerical summaries.

This method will often use getInputMetaData() to find out about the
inputs and getNodeProperties() to find out about the properties.
This information is then used to determine the output information.

This method may be called before the data has been read, and should
be able to handle this case properly.

CNKProc
Objects

The CNKProc object provides the connection to the pipeline. The
pipeline can be thought of as having a series of procedures (procs)
connected by buffers. Each procedure is represented by a CNKProc
object. This object has methods for obtaining property values, getting
data from input buffers, and writing data to output buffers. Running a
component consists of the pipeline repeatedly telling the CNKProc
object to access the input buffers and use the contents of the buffers to
create new values and write them to the output buffers.

Java Procs If the computation is to be performed in Java, a
CNKProcJavaTransform object is used. This provides a wide variety of
methods for marshalling data back and forth between the C++-level
pipeline code and Java code.

The setExecObject() method of this object is used to indicate a Java
class implementing the CNKProcJavaTransformExec interface to
perform the actual computation. This interface has a single
execute() method that is called once for each block of data.

public void execute(CNKProcJavaTransform proc);

Often the EngineNode will itself implement this interface, with the
computation for each block performed by its execute() method.

A typical procCreate() call for this case is of the form:

public CNKProc procCreate() throws Exception {
 CNKProcJavaTransform proc = new CNKProcJavaTransform();
 proc.setExecObject(this);
 return(proc);
}

26

An example execute() method is in the section Simple Java Version
on page 28.

C++ Procs If the computation is to be performed in C++, the CNKProc class will
be a simple class extending CNKProc with information on what C++
class to use. This information is specified in the createPeerObject()
method.

public void createPeerObject() {
 createCNKObject(“cnkmisc”,

new String[] { "CNKProcKMeans", "CNKProc",
"CNKObj" });

}

The section The TIBCO Spotfire Pipeline on page 50 discusses the
C++ pipeline classes including the C++ CNKProc class that will be
extended to perform the computations in C++. An example using
C++ is available in the section Simple C++ Version on page 32.

C++ Tips Here are some useful tips regarding the computational code
requirements.

• When creating a Java node calling a C++, the
createPeerObject() method is the key Java method. This
specifies the peer C++ class, and which shared object library
to load.

• When creating a C++ proc, the key methods are the
constructor, destructor, init(), execute(), setProperty(),
and getProperty().

• In a C++ proc, be sure to call the super-class init() method
from the init() method in your child class.

• In a C++ proc, be sure to set and get the properties using
consistent types. If you set a property as one type and get it as
another, the result will be incorrect.

• In a C++ proc, be sure to include the
CNK_DEFINE_ACCESSIBLE_CLASS macro at the top of your code.
This is necessary for the C++ CNKProc object to be created.
27

EXAMPLE: COPYING INPUTS

This section presents a simple example of the steps needed to create a
new node. We will create a node that simply copies data from its
inputs to its outputs. While the computation involved is trivial, this
will show what’s involved in creating a node.

We begin with an implementation involving no parameters and
written completely in Java. Later extensions include computation
performed in C++ and a dialog to pass parameters.

For all of the examples presented here, the full code is available in the
examples/programming directory.

Simple Java
Version

For the first implementation, we will use a minimal set of Java classes.

Recall that typically we will need to implement a class extending
ActivityNodeModel to handle GUI operations, a class extending
EngineNode to handle engine operations, and possibly other classes
for the properties dialog and custom viewer.

Node Model To keep things simple we will not include a properties dialog or
custom viewer. As there are no parameters, we do not need to
validate whether all of the properties are set. In this case we can use
the default implementation of ActivityNodeModel.

Engine Node The Java implementation of the engine node will primarily need
computation-specific code for computing the output column name
and type information (the output metadata) and for actually copying
the data when the node is executed. In addition, there will be some
essentially boilerplate code.

We start with a simple implementation of the execute() and
calculateOutputMetaData() methods. Later we will provide more
extensive implementations.

Implementation

The file FirstCopyEngineNode.java contains:

import com.insightful.miner.*;
import com.insightful.cnkjava.*;
28

/**
 * Very simple implementation of engine node copying each
 * input to the corresponding output. Assumes the same
 * number of inputs as outputs. To keep this short, no
 * error checking is performed.
 */

public class FirstCopyEngineNode extends EngineNode
 implements CNKProcJavaTransformExec {

 /**
 * Empty constructor just uses the super method.
 */

 public FirstCopyEngineNode() {

 }

 /**
 * Boilerplate for specifying this class provides the
 * execute() method.
 */

 public CNKProc procCreate() throws Exception {
 CNKProcJavaTransform proc = new CNKProcJavaTransform();
 proc.setExecObject(this);
 return(proc);
 }

 /**
 * Passes the input column name/type information as the
 * output information.
 */

 public XTMetaData calculateOutputMetaData(int outputNum)
 {
 return (XTMetaData)getInputMetaData(outputNum).clone();
 }

 /**
 * Copies the two inputs to the two outputs when the node
29

 * is executed.
 */

 public void execute(CNKProcJavaTransform proc) {
 for (int i=0; i<getNumInputs(); i++) {
 proc.copyData(i, 0, 0, i, 0, 0,
 proc.getChunkInputRows(i),
 getInputMetaData(i).getNumColumns());
 }
 }

}

This example file does not start with a package statement, so the
FirstCopyEngineNode class will be part of the unnamed default
package. We import the files in the com.insightful.miner and
com.insightful.cnkjava packages. We could be more selective
regarding our imports and only import the classes that we actually
use.

The FirstCopyEngineNode class will use a Java transform, so it is
defined to implement CNKProcJavaTransformExec. In procCreate()
we create a CNKProcJavaTransform object that will call the
FirstCopyEngineNode.execute() method once for each block of data.

In calculateOutputMetaData() we copy the metadata for each input
to the corresponding output, since the names and types of the output
columns are the same as the corresponding input.

In execute() we loop over the inputs and use the
CNKProcJavaTransform method copyData() to copy the specified
range of rows. The arguments for this function are:

public void copyData(int outputNum, int outputFirstCol,
int outputFirstRow, int inputNum, int inputFirstCol,
int inputFirstRow, int numRows, int numColumns)

For each input, we get the number of rows in the current chunk from
the CNKProcJavaTransform and the number of columns from the
input’s XTMetaData.
30

Compilation

Now that we have our Java code, we need to compile it and place it in
a jar file. The specific steps for compiling the code and creating the
jar will vary based on the Java development tools used.

For example, suppose you have Spotfire Miner installed in
D:\Program Files, and you have Sun’s JDK1.4 installed in
D:\java\jdk1.4.0. To compile the example files in the Spotfire Miner
distribution using the Miner.jar in the distribution, first change into
the directory containing the Java source code and then use the javac
command:

cd "D:\Program Files\TIBCO\miner82\examples"

D:\java\jdk1.4.0\bin\javac -classpath "D:\Program
Files\TIBCO\miner82\tools\splus\java\jre\lib\ext\Miner.jar"
*.java

The directory with the *.java files will now also contain *.class files.
These need to be put into an extension.jar file, which we will then
copy into the extension directory. The jar command creates a jar
file:

D:\java\jdk1.4.0\bin\jar cvf extension.jar *.class

XML Description Next we need to create the XML description of this node. Let’s label
it as the First Copy Columns node, use the default icons, and specify
two inputs and outputs. The XML to create a new page with a folder
containing this description is:

<?xml version="1.0" encoding="UTF-8"?>
<ExplorerTree>

<ExplorerPage labelText="Programming Examples">
<ExplorerNodeList>

<ExplorerFolder expanded="true"
labelText="Copy Columns">
<ExplorerNodeList>

<ActivityNode
engineClass="FirstCopyEngineNode"
guiClass=

"com.insightful.miner.ActivityNodeModel"
numInputs="2"
numOutputs="2" >
31

<DisplayInfo
labelText="First Copy Columns"
defaultLabelText="First Copy Columns"
smallIcon="default_small.gif"
largeIcon="default_large.gif" />

</ActivityNode>
</ExplorerNodeList>

</ExplorerFolder>
</ExplorerNodeList>

</ExplorerPage>
</ExplorerTree>

To put additional nodes in the folder, include the additional
ActivityNodeModel elements at the same level as the one above. For
multiple folders, include additional ExplorerFolder elements at the
same level as the one above.

Save this description in a file named extension.iml in the extension
directory. An XML file with all three descriptions of the copy nodes is
available in the programming examples directory.

Try the Node If you have successfully compiled the code, placed it in a properly
located jar file, and created the XML description of the examples
library, you’ll now be able to try the new node.

Start Spotfire Miner. The Explorer should now have a page titled
Programming Examples containing a folder with the First Copy
Columns node. This node can be dragged onto the worksheet,
connected, and executed just like any of the built-in nodes.

Simple C++
Version

In the first implementation, we do the computation completely in
Java. Let’s now construct an implementation in C++. We will need a
Java class extending EngineNode to calculate the meta data and create
the Java proc object, a Java class extending CNKProc indicating the
C++ class to use, and a C++ class extending CNKProc performing the
computation.

Note that CNKProc is the name of both a Java class and a C++ class.
The C++ classes discussed in the section The TIBCO Spotfire
Pipeline on page 50 all have corresponding Java classes with the same
name and purpose.
32

Engine Node The engine node corresponding to a C++ proc differs from the
version for the straight Java implementation in a variety of ways:

• The class does not implement CNKProcJavaTransformExec.

• The procCreate() method creates a Java class corresponding
to the C++ proc rather than registering the current class.

• There is no execute() method.

It is similar in its imports, constructor, and the
calculateOutputMetaData() method.

The notable aspect of this code is the construction of the
CNKProcSecondCopy object in procCreate(). The rest of the code is
familiar from the previous example.

The SecondCopyEngineNode.java file contains:

import com.insightful.miner.*;
import com.insightful.cnkjava.*;

/**
 * Very simple implementation of engine node copying each
 * input to the corresponding output using a C++ proc.
 */

public class SecondCopyEngineNode extends EngineNode {

 /**
 * Empty constructor just uses the super method.
 */

 public SecondCopyEngineNode() {

 }

 /**
 * Create the CNKProcSecondCopy object.
 */

 public CNKProc procCreate() throws Exception {
 CNKProcSecondCopy proc = new CNKProcSecondCopy();
 return(proc);
 }
33

 /**
 * Passes the input column name/type information as the
 * output information.
 */

 public XTMetaData calculateOutputMetaData(int outputNum)
 {
 return (XTMetaData)getInputMetaData(outputNum).clone();
 }

}

Java CNKProc The Java class extending CNKProc has two main responsibilities:

• Indicate the name and location of the C++ class.

• Provide a mechanism for exchanging property values with the
C++ class.

Since we have no properties to exchange, our class will just perform
the first task. The createPeerObject() method indicates that our
C++ class will be named CNKProcCppSecondCopy, and it will be in the
cnkcopy C++ library. The CNKProcSecondCopy.java file contains:

import com.insightful.cnkjava.*;

/**
 * Java class corresponding to C++ proc for Copy Columns
 * example.
 */
public class CNKProcSecondCopy extends CNKProc {

/**
 * Default constructor does nothing.
 */

 public CNKProcSecondCopy() {
 }

 /**
 * Specify that the C++ class is named
 * CNKProcCppSecondCopy and that it is in the cnkcopy
34

 * DLL
 */
 public void createPeerObject() {
 createCNKObject("cnkcopy", new String[] {
 "CNKProcCppSecondCopy", "CNKProc", "CNKObj" });
 }

}

C++ CNKProc Now that we’ve written the necessary Java code for our second
implementation, it’s time to construct the C++ code that does the
actual computation. We’ll need a C++ header file and
implementation.

Header File

The CNKProcCppSecondCopy.h file will contain:

#if !defined(CNKProcCppSecondCopy_INCLUDED_)
#define CNKProcCppSecondCopy_INCLUDED_

#include "CNKObj.h"
#include "CNKBuf.h"
#include "CNKBufReader.h"
#include "CNKProc.h"

class CNKProcCppSecondCopy : public CNKProc
{
public:
 CNKProcCppSecondCopy();
 virtual ~CNKProcCppSecondCopy();
 virtual void init();
 virtual void execute();
};

#endif // !defined(CNKProcCppSecondCopy_INCLUDED_)

If we had any property information to exchange with Java, we would
also declare and implement setProperty() and getProperty().

Implementation

The CNKProcCppSecondCopy.cpp file will contain:
35

#include "CNKProcCppSecondCopy.h"

CNK_DEFINE_ACCESSIBLE_CLASS(CNKProcCppSecondCopy)

CNKProcCppSecondCopy::CNKProcCppSecondCopy()
 : CNKProc()
{
}

CNKProcCppSecondCopy::~CNKProcCppSecondCopy()
{
}

void
CNKProcCppSecondCopy::init()
{
 CNKProc::init();
}

void
CNKProcCppSecondCopy::execute()
{
 long inputRows = executeRequestRows();
 if (inputRows<0)
 return;

 for (int inputNum = 0; inputNum<getNumInputs();
inputNum++) {
CNKBufReader* rdr = getInputBufReader(inputNum);
CNKBufWriter* wtr = getOutputBufWriter(inputNum);
int numColumns = rdr->getBuf()->getNumColumns();

// copy input to output
 wtr->copyBufData(rdr, 0, 0, 0, 0,

inputRows, numColumns);
 }

 executeReleaseRows(inputRows);
}

For details on the C++ classes and methods used here, see the section
The TIBCO Spotfire Pipeline on page 50.
36

Now that we have the C++ source and header files, we need to
compile the code to create the DLL.

Compilation

The programming examples directory contains a Visual C++ 6.0
project cnkcopy.dsp that is configured to build the cnkcopy.dll.

The cnkcopy.dsp project was created as follows:

1. Use File:New to generate an empty Win32 Dynamic-Link
Library project .

2. Add CNKProcCppSecondCopy.cpp and
CNKProcCppSecondCopy.h to the project.

3. For both Debug and Release configurations, add
..\..\..\include\cnkbase to the Additional include
directories. This is specified in the General Settings
dialog on the C/C++ tab in the Preprocessor category.

4. For both Debug and Release configurations, add cnkbase.lib
to the Object/library modules. This is specified in the
General Settings dialog on the Link tab in the General
category.

5. For the Debug configuration, add ..\..\..\lib\cnkbase\Debug
to the Additional library path. This is specified in the
General Settings dialog on the Link tab in the Input
category. For the Release configuration, specify the settings in
the Release subdirectory.

The relative file paths (such as ..\..\..\include\cnkbase) work when
the cnkcopy.dsp project is located in the programming examples
directory. If it were moved somewhere else, these paths would need
to be changed to reference the Spotfire Miner directory.

To try this example, build the Release version of this DLL and copy it
to the file extension.dll in the extension directory

XML Description The XML description for this node differs from the previous version
only in the engine class name and label text.

<ActivityNode
 engineClass="SecondCopyEngineNode"
 guiClass="com.insightful.miner.ActivityNodeModel"
 numInputs="2"
37

 numOutputs="2" >
 <DisplayInfo labelText="Second Copy Columns"
 defaultLabelText="Second Copy Columns"
 smallIcon="default_small.gif"
 largeIcon="default_large.gif" />
</ActivityNode>

Extended Java
Version

The previous implementations are relatively simple in that they use a
minimal number of computation classes. Let’s extend this to cover
additional functionality that will often be needed for a new node:

• Add a property dialog

• Validate whether required properties are specified

• Provide a custom viewer

• Use lower-level buffer manipulation routines

In this example we will write all of the code in Java. If we prefer to
use C++, we still need to use Java for the GUI classes. We can use
C++ for the computation as described in the previous example.

This example will use a single input and output. Multiple inputs and
outputs would require a more sophisticated dialog than the one
presented here.

Node Model The node model class defined in the file ThirdCopyNodeModel.java
will take care of launching the property dialog, launching the viewer,
and validating whether the required properties are set.

import com.insightful.miner.*;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import javax.xml.parsers.DocumentBuilderFactory;

import java.awt.Frame;
import javax.swing.JOptionPane;
import java.util.Vector;

/**
 * Node model for example of a node copying specified
 * columns for a single input to an output.
 */
38

public class ThirdCopyNodeModel extends ActivityNodeModel {

 /**
 * Boilerplate constructor.
 */

 public ThirdCopyNodeModel() {
 }

 /**
 * Show the properties dialog
 */

 public void showPropertiesDialog(boolean modality) {
 NodeDialog dialog = ThirdCopyDialog.getInstance();
 dialog.setModal(modality);
 dialog.show(this);
 }

 /**
 * Make sure that at least one column is specified and
 * that all of the columns are actually present in this
 * input.
 */

 public boolean isPropertiesValid() {
 Vector columns = getXTProps().getSubProperties(
 ThirdCopyEngineNode.COLUMNS_ATTRIBUTE_TAG);
 boolean valid = (columns.size() > 0);

 try {
 if (isInputValid()) {
 XTMetaData md = getInputMetaData(0);
 for (int i=columns.size()-1; i>=0; i--) {
 // Check that column is present for the input
 if (!md.containsColumn((String)columns.get(i)))
 return false;
 }
 }
39

 } catch (Exception e) {
 e.printStackTrace();
 valid = false;
 }

 return valid;
 }

 /**
 * Display the cached input metadata as HTML
 */

 public void showView(Frame frame) {
 try {
 // Get cached summary
 XTMetaData cacheMD = getNodeCacheXTMetaData(
 ThirdCopyEngineNode.INPUT_MD_CACHE_NAME);

 if (cacheMD == null) {
 AcceleratorOptionPane.showOKDialog(frame,
 "No view information stored.",
 "No View Information",
 JOptionPane.WARNING_MESSAGE);
 }
 else {
 String htmlString = cacheMD.getHtmlString(
 XMLTree.META_DATA_XSL_FILE,
 getLabelText());
 new HtmlFrame(htmlString);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Node Dialog The node dialog will have two pages:

• A page with a list box to select which columns to copy.

• The standard Advanced page with general node options.
40

The column selection control is a list box of column names with
selection indicating which Columns to Copy. Use the standard
Windows selection mechanism of shift-click to select a range of items
and ctrl-click to change the selection state of a single item.

The standard property dialogs used in Spotfire Miner are singletons.
There is only a single dialog of each type that is reused. This reduces
the memory usage and the time needed to display the dialog. A
ramification of this is that the state of the dialog is not reset when it is
closed. Any initialization to the dialog needs to be done when the
dialog is restored.

The key methods for setting and getting the properties are
restoreProperties() and saveProperties(). The constructor and
getInstance() methods are boilerplate routines, and the
createOptionsPanel() method defines the first page of the dialog.

We override the onHelp() method to launch a message box with
some help information. While it’s preferable to display a more
descriptive external help file, we use the message box to keep the
example self-contained.

The file ThirdCopyDialog.java contains:

import com.insightful.miner.*;
import javax.swing.*;
import java.awt.*;
import java.util.Vector;

public class ThirdCopyDialog extends NodeDialog {

 // Static instance of the dialog
 private static ThirdCopyDialog instance = null;

 // Controls
 private JList listBox;
 private DefaultListModel listModel;

 public static ThirdCopyDialog getInstance() {
 if (instance == null) {
 instance = new ThirdCopyDialog();
 }
 return(instance);
 }
41

 private ThirdCopyDialog() {
 super();
 pack();
 setMinimumSize(new Dimension(500,500));
 }

 /**
 * Restore the list of column names and selection state.
 */

 public void restoreProperties() {
 super.restoreProperties();

 Vector inputNames = null;
 try {
 // The ActivityNodeModel is stored as the "model"
 // in the NodeDialog. We get info from it.
 inputNames = getNodeModel().getInputMetaData(0
).getColumnNames();
 }
 catch (Exception e) {
 e.printStackTrace();
 inputNames = new Vector();
 }

 Vector selectionNames = getNodeModel().getXTProps(
).getSubProperties(
 ThirdCopyEngineNode.COLUMNS_ATTRIBUTE_TAG);

 listModel.clear();
 listModel.setSize(inputNames.size());

 // Select any columns listed in the selection names.
 String curName = null;
 for (int i=0; i<inputNames.size(); i++) {
 curName = (String) inputNames.get(i);
 listModel.add(i, curName);
 if (selectionNames.contains(curName)) {
 listBox.addSelectionInterval(i, i);
 }
42

 }

 }

 /**
 * Method called by the dialog to save properties in Model
 */
 public void saveProperties()
 throws NodeDialog.DialogException {
 super.saveProperties();
 XTProps props = getNodeModel().getXTProps();

 // clear old selected values
 props.removeProperty(new String []
 {ThirdCopyEngineNode.COLUMNS_ATTRIBUTE_TAG});

 // Save the names of the selected columns
 Object [] selectedValues =
 listBox.getSelectedValues();

 for (int i=0; i < selectedValues.length; i++) {
 props.set(new String []
 {ThirdCopyEngineNode.COLUMNS_ATTRIBUTE_TAG,
 (String) selectedValues[i]}, "");
 }

 // Clear out the list to release memory
 listModel.clear();
 }

 /**
 * Create the first options page. We hardcode label text
 * in this example. It's preferable to put the text in
 * an external ResourceBundle for potential
 * internationalization.
 */
 public JPanel createOptionsPanel() {
 JPanel optionsPanel = new JPanel(new GridBagLayout());
 optionsPanel.setBorder(
 BorderFactory.createEmptyBorder(5,5,5,5));
43

 listModel = new DefaultListModel();

 listBox = new JList();
 listBox.setModel(listModel);
 listBox.setSelectionMode(
 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 JScrollPane scrollPane = new JScrollPane(listBox);
 scrollPane.setBorder(
 BorderFactory.createLoweredBevelBorder());

 JLabel label = new JLabel("Columns to Copy");
 label.setBorder(
 BorderFactory.createEmptyBorder(0, 0, 5, 0));
 label.setLabelFor(listBox);

 GridBagConstraints constraints =
 new GridBagConstraints();

 constraints.anchor = constraints.NORTHWEST;
 optionsPanel.add(label, constraints);
 constraints.gridy = 1;
 constraints.weighty = 1.0;
 constraints.weightx = 0.5;
 constraints.fill = constraints.BOTH;
 constraints.gridheight = constraints.REMAINDER;
 optionsPanel.add(scrollPane, constraints);

 return optionsPanel;
 }

 /**
 * Method called when the user presses the help button
 */
 public void onHelp() {
 AcceleratorOptionPane.showOKDialog(this,
 "This dialog copies specified columns from\n" +
 "the input to the output. Selected the\n" +
 "columns to be copied. For multiple selection,\n" +
 "use SHIFT+click to select a range of items and\n" +
 "CTRL+click to add items to the current selection.",
 "Copy Dialog Usage",
44

 JOptionPane.INFORMATION_MESSAGE);
 }
}

Engine Node The engine node implementation displays a variety of functionality:

• Return the metadata for the specified columns.

• Store the column names before executing the proc for each
chunk, and delete these names after execution is complete.

• Print an information message and copy the selected columns
for each chunk.

• After execution, store the input metadata in a cache that can
be accessed later for viewing.

The code for this in the file ThirdCopyEngineNode.java is:

import com.insightful.miner.*;
import com.insightful.cnkjava.*;

import java.util.Vector;

/**
 * Extended implementation of engine node copying each
 * input to the corresponding output. Assumes a single
 * input and output. Stores the input metadata in a
 * cache as an example of caching information for use
 * in a viewer.
 */

public class ThirdCopyEngineNode extends EngineNode
 implements CNKProcJavaTransformExec {

 // Statics referred to by node model and dialog to
 // set/get properties
 public final static String COLUMNS_ATTRIBUTE_TAG =
 "colsToCopy";
 public final static String INPUT_MD_CACHE_NAME =
 "imdCache";

 // Store information for use in all chunks
 private Vector m_columnNames = null;
45

 /**
 * Empty constructor just uses the super method.
 */

 public ThirdCopyEngineNode() {

 }

 /**
 * Boilerplate for specifying this class provides the
 * execute() method.
 */
 public CNKProc procCreate() throws Exception {
 CNKProcJavaTransform proc = new CNKProcJavaTransform();
 proc.setExecObject(this);
 return(proc);
 }

 /**
 * Look at which columns will be copied and return their
 * metadata.
 */

 public XTMetaData calculateOutputMetaData(int outputNum){
 if (outputNum > 0) {
 return null;
 }

 XTMetaData inMD = getInputMetaData(0);
 XTProps props = getNodeProperties();
 Vector columns = props.getSubProperties(
 COLUMNS_ATTRIBUTE_TAG);

 if (columns == null || columns.size() == 0){
 return null;
 }

 XTMetaData outMD = inMD.selectiveClone(columns);

 return outMD;
 }
46

 /**
 * Store the column names to be referred to when
 * executing. This shows how to store information for
 * use in multiple chunks.
 */

 public void procSetProperties(CNKProc proc) {
 m_columnNames = getNodeProperties().getSubProperties(
 COLUMNS_ATTRIBUTE_TAG);
 if (m_columnNames == null || m_columnNames.size() == 0){
 printlnWarning(
 "No columns specified. No columns will be copied.");
 }
 }

 /**
 * Copies the specified columns to the output. Prints an
 * information message about the current chuck.
 */

 public void execute(CNKProcJavaTransform proc) {

 if (m_columnNames != null) {
 // Print informational message
 long firstRow = proc.getChunkInputPosition(0);
 printlnInformation("Copying rows " + firstRow +
 " to " + (firstRow + proc.getChunkInputRows(0)));

 XTMetaData inMD = getInputMetaData(0);
 XTMetaData outMD = calculateOutputMetaData(0);

 // Copy specified columns
 int inColNum, outColNum;
 int rowCount;
 String colName = null;
 for (int i=0; i < m_columnNames.size(); i++) {
 colName = (String) m_columnNames.get(i);
 inColNum = inMD.nameToOrdinal(colName);
 outColNum = outMD.nameToOrdinal(colName);
47

 // Some error checking
 if (inColNum < 0) {
 proc.addError("Column '" + colName +
 "' not present in input metadata");
 }
 if (outColNum < 0) {
 proc.addError("Column '" + colName +
 "' not present in output metadata");
 }
 if (!inMD.getColumnType(inColNum).equals(
 outMD.getColumnType(outColNum))) {
 proc.addError(
 "Input and output column types do not match for column '" +
 colName + "'");
 }

 if (!proc.hasError()) {
 rowCount = proc.getChunkInputRows(0);
 proc.copyData(0, outColNum, 0, 0,
 inColNum, 0, rowCount, 1);
 }
 }
 }
 }

 /**
 * Stores the input metadata in a cache for use when
 * viewing. Called after the proc has been executed.
 */

 public void procExtractResults(CNKProc proc)
 throws Exception {
 setNodeCache(INPUT_MD_CACHE_NAME, getInputMetaData(0));
 }

 /**
 * Delete the information that we stored.
 */

 public void procDelete(CNKProc proc) {
 super.procDelete(proc);
48

 m_columnNames = null;
 }
}

XML Description The XML description for this node differs from the previous versions
in the engine class name, GUI class name, number of inputs, number
of outputs, and label text.

<ActivityNode
 engineClass="ThirdCopyEngineNode"
 guiClass=
 "com.insightful.miner.examples.ThirdCopyNodeModel"
 numInputs="1"
 numOutputs="1" >
 <DisplayInfo labelText="Third Copy Columns"
 defaultLabelText="Third Copy Columns"
 smallIcon="default_small.gif"
 largeIcon="default_large.gif" />
</ActivityNode>
49

THE TIBCO SPOTFIRE PIPELINE

Overview The TIBCO Spotfire Pipeline is a C++ system for accessing and
manipulating very large data sets.

The core of the TIBCO Spotfire Pipeline system is a set of C++
classes representing Buf, Proc, and Pipeline objects. In order to
create entirely new Proc components, it is necessary to implement
them as new C++ classes. This chapter describes the C++ classes
used by the TIBCO Spotfire Pipeline system, and explains how new
components can be implemented. New C++ Proc classes need to
follow certain rules to work within the pipeline.

The Java package com.insightful.cnkjava contains peer classes for
each of the classes presented here. The architecture description here
is also informative for the straight Java programmer. For Java-
oriented method descriptions, see the javadoc in doc/javadoc.

Basic Objects A pipeline is composed of only a few different types of objects.

Proc

A Proc is a data processing object. There are many different types of
procs, used for performing different operations, including reading
data from a file or database, performing a transformation on some
data, accumulating count information, or constructing a linear model
from a data stream.

Buf

A Buf is a data buffer. A buf has multiple named columns which can
contain elements of different types, and N rows of data. A buf is used
like a circular buffer.

When a proc produces new data rows, they are written to a buf. One
or more procs read the data rows from the buf, in the order that they
were written. The only way that one proc in a pipeline can send data
to another one is through an intermediate buf object.
50

Pipeline

A Pipeline object contains a set of bufs and procs. When a pipeline is
executed, it repeatedly executes the procs, which read data from and
to bufs, until no procs can be executed (typically because all of the
data has been processed).

Constructing a
Pipeline

The typical way to construct a pipeline, followed in the example
pipeline-construction functions, is to first create the bufs. Next, the
procs in the pipeline are created. The inputs and outputs of the procs
are specified as bufs, essentially "wiring together" the procs into a
pipeline. Finally, the bufs and procs are encapsulated into a pipeline
object, which can be executed.

Object
Initialization

The basic model for constructing an object is to create it, and then set
various properties to configure it, and then to initialize it. During
initialization, any storage allocation needed before executing the
pipeline is done, according to the set properties.

Proc and Buf objects need to be initialized before they are executed
within a pipeline. Therefore, when they are created, their error string
is set to "uninitialized". The pipeline execution methods will not
use any procs or bufs with error strings set, so this prevents executing
the pipeline before it is initialized.

Object Name Each object can optionally have a name string. This name is used to
identify the object in status messages.

Error String Each object can have an associated error string. Normally, if no error
has occurred, the error string is the empty string "". If an error occurs
while initializing or running an object, its error string is set to a string
describing the error. The only way to clear an error is to initialize the
object.

Column Types A buf object, described below, represents a data buffer with rows and
columns, something like an Spotfire S+ data frame. As with a data
frame, different columns can store different types of data. Currently,
there are four different data types: double, factor, string, and
timeDate.

Double

The double type is simple; each value is interpreted as a floating point
number.
51

Factor

The factor data type is much more complicated. A factor column
maintains a list of strings, representing the levels of the factor. When a
string is read from a file or database into a factor data column (by the
file reader proc), each string value is compared to the list of level
strings, and converted into a level number (1 through the number of
levels).

If you know all of the possible factor levels that can be read ahead of
time, you can simply set up a factor column with these levels.
However, if you don't know all of the possible factor levels, there is a
potential problem. The pipeline is designed to be used for problems
with very large amounts of data. If every new factor level that
appears is simply added to the level list, then it is possible that the
system would allocate more and more different level strings, until you
run out of memory. Even if the number of possible levels is relatively
small, there are situations where it is useful to restrict it even further.
Some operations such as tree modeling and crosstabs can take
massive amounts of time or space for variables with many factor
levels.

To control the number of automatically-created factor levels, each
column has two properties, max.auto.levels and overflow.level.
For a factor data type, the max.auto.levels property determines the
maximum number of levels that will be automatically created. The
actual number of levels in a factor can be set larger than this, by
explicitly setting the level strings. The default value of
max.auto.levels is 10. A simple way to disable auto-creation of
factors is by setting max.auto.levels to 0.

The overflow.level property is used when handling a new factor
level. If adding the new level would cause the number of levels to
exceed the max.auto.levels property, the overflow.level string is
used instead. For example, if the levels are "yes" and "no",
max.auto.levels is 2, and overflow.level is "yes", then all other
factor values will map to "yes". If the overflow level is not one of the
existing levels, it is added, but it is done soon enough so that the total
number of levels will not exceed max.auto.levels. If
overflow.level is "", the default, then overflow levels are mapped to
NA.
52

String

String columns are used for informational columns such as names or
addresses that do not represent categories and are not used in
computations. The actual string value is stored separately for each
row. The number of characters stored can be set for each column.

The underlying pipeline can handle full Unicode multibyte
characters. However, the import/export library used by Spotfire
Miner only supports 8-byte ASCII. This includes all of the characters
in most Romance languages, but not the full character sets for some
Asian languages.

The string width value actually specifies the number of bytes used.
Multibyte characters may use more than one byte per character, in
which case the number of characters that can be stored for a string
will be less than the string width setting.

Time/Date

Time/Date columns are used to represent dates and times. They are
stored as a long representing the number of milliseconds since an
origin of January 1, 1970. This is the same origin used by Java. A
string representation of the time is used for display. Options under
Tools:Options specify the default date formats for reading and
displaying time/date values.

Buf Objects A buf object represents a data buffer with N rows by P columns. The

number of rows, number of columns, their names, and their data
types are determined when the buf is created. The actual storage in a
buf is allocated when the buf is initialized.

A buf object acts like a circular buffer. One proc can write a series of
rows of data into a buf, and one or more procs can read this data, in
order. As a proc reads a chunk of data from a buf, it releases the
chunk. Only when all reading procs have released a chunk of data is
the space available to be filled by newly-written rows.

It is very important that the bufs be sized large enough. Before a proc
can run, it needs to reserve a chunk of data from its input bufs, as well
as the space for its output data in its output bufs. While a proc is
executing, it cannot allocate more space from its output bufs.
Therefore, if a buf is too small, you can have a situation where a
reading proc cannot execute (because its input buf doesn't have
53

enough rows available), but the proc writing to that buf cannot write
to it (because the buf doesn't have enough free rows for writing to). In
general, a buf needs to contain a number of rows equal to the
maximum number of rows the writing proc can request, plus the
maximum number of rows that any of the readers can ask for. To
avoid this problem, the default number of rows for a buf is 2000, and
for any of the procs is 1000 rows.

C++ Libraries The C++ pipeline classes used by Spotfire Miner are divided into five
libraries: cnkbase, cnkio, cnkjava, cnkmisc, and cnksp. These are
distributed as dynamic linked libraries (*.dll).

Header files for the cnkbase library are available in include/
cnkbase. Debug and Release versions of cnkbase.lib are available in
lib/cnkbase. As programmers are not expected to directly use or
extend the other libraries, these files are only provided for cnkbase.

User-written procs belong in a user-written library, as shown in the
example in section Simple C++ Version on page 32

Cnkbase Library

The cnkbase library provides the core pipeline implementation.
This includes classes for procs, bufs, and the pipeline.

Programmers implementing new procedures or doing pipeline
programming in general will use these classes.

Cnkio Library

The cnkio library provides file and database IO support. The
CNKProcFile class supports all of the file and database read/write
nodes in Spotfire Miner.

Cnkjava Library

The cnkjava library provides support for communicating between
C++ and Java. This includes the CNKJava class with infrastructure for
passing information between C++ and Java, and the
CNKProcJavaTransform class used to call back into Java to perform
computations in Java.

Java programmers will use the Java side of this connection.
54

Cnkmisc Library

The cnkmisc library contains the C++ code for the various C++
procs in Spotfire Miner. This includes components such as linear
regression, neural networks, trees, and clustering.

TIBCO will continue to add classes to this library to expand the
functionality of Spotfire Miner. Other programmers will be adding
components to their own library.

Cnksp Library

The cnksp library provides support for calling Spotfire S+ from the
pipeline. This is used by the Java class CNKProcSplusTransform to
call into Spotfire S+.

Programmers wishing to write components using Spotfire S+ should
typically use the SplusScriptEngineNode in Java.

C++ Classes The following list shows all of the C++ classes currently available in
the cnkbase library. The indentation shows inheritance: Almost all
of the classes inherit from CNKObj, which implements several utility
methods, and the Proc implementation classes all inherit from
CNKProc.

CNKObj
CNKBuf

CNKMemoryBuf
CNKBackingFileBuf

CNKBufReader
CNKMemoryBufReader
CNKBackingFileBufReader

CNKBufWriter
CNKMemoryBufWriter
CNKBackingFileBufWriter

CNKProc
CNKProcCount
CNKProcNullReader
CNKProcNullWriter
CNKProcPrintf
CNKProcRandomReader

CNKPipeline
CNKPropertyInfo
55

These classes, and their publicly-accessible methods, will be
described below.

All of these classes have similarly-named header files (CNKObj.h,
CNKBuf.h, etc.) which are available in the include/cnkbase
directory.

CNKObj: Main
Parent Class

Almost all of the object classes inherit directly or indirectly from
CNKObj, a class containing several useful utility methods. This class
also introduces some style rules used in all of the other classes.

CNKObj::
 CNKObj();
 virtual ~CNKObj();
 virtual void init();

Individual CNKObj objects can be created and destroyed, although
these objects are not very useful by themselves. Note that the
constructor has no arguments; this is true of all of the CNK object
constructors.

Objects are created and initialized as follows:

1. Create the object, calling the constructor with no arguments.

2. Set the object properties by calling class-specific methods.

3. Call init() to initialize object using the properties.

Each subclass should redefine init() to call its parent class init(),
and then perform whatever class-specific initialization is needed. For
example, CNKBuf::init() starts by calling CNKObj::init().

There are several reasons for using this approach. First, it allows
object classes to have many properties, without having to maintain
constructors with all of these properties. Second, this simplifies the
Java-to-C++ communication facility. Finally, it allows an object to be
re-initialized, by changing properties and calling init() again.

One downside of this approach is that one has to be careful not to use
an object between changing its properties and calling init(), since it
may be in an inconsistent state.

CNKObj::
 void setName(const char* name);
 const char* getName();
56

These methods set and get a name associated with the CNK object.
The initial value for name is NULL.

This is a good opportunity to mention several aspects related to string
properties. First, string properties can be NULL, and code that
retrieves these values should check for that. Second, any string
properties that an object needs to keep around should be copied. For
example, the object cannot assume that the string passed into setName
will live longer than the call to setName. Putting it another way, a
CNK object "owns" the storage for any string properties it has. To
copy a string into new storage, use the copyString utility function
described below. Third, the const char* declarations specify that the
object will not modify the string passed into it, and that it does not
allow the external users to modify this string. These rules should be
followed for other CNK objects.

 CNKObj::
 void setError(const char* error);
 void setError(const char* error, const char* val);
 void setError(const char* error, int val);
 void setError(const char* error, long val);
 void setError(const char* error, double val);
 const char* getError();

These methods set and get an error string associated with a CNK
object. Initially the error value is NULL, indicating no error. If an
error occurs during any operation on an object, its error string should
be set to a string describing the error. You shouldn't do anything with
an object if it has an error, other than setting its properties, and calling
init() (which should clear the error string).

Because getError() returns NULL for no error, it can be used in code
such as "if (xx.getError()) ...".

The two-argument methods for setError are convenient for creating
common error strings. They format and save an error string of the
form "<firstarg>: <secondarg>". For example, setError("bad
arg", 34) will set the error string to "bad arg: 34".

CNKObj::
 // message severity levels
 enum severity_enum { severity_debug,

 severity_verbose,
 severity_information,
57

 severity_warning,
 severity_error };

 void addError(const char* msg);
 void addWarning(const char* msg);
 void addInformation(const char* msg);
 void addVerbose(const char* msg);
 void addDebug(const char* msg);
 void addMessage(const char* msg, int severity);

Each object can have a set of messages. Typically these are items such
as warning messages, debug information, or status messages. The
severity of the message can be used to determine when to display the
message. These methods are used to add messages of various types.

CNKObj::
 static void setMaxMessages(long val);
 static long getMaxMessages();

 static void setMaxMessageLength(long val);
 static long getMaxMessageLength();

To avoid memory usage problems due to an unanticipated number of
messages, the maximum number of messages to store can be set using
setMaxMessages(). Setting this to a positive number sets the
maximum number of messages that will be stored. Additional
messages will be discarded.

The maximum number of characters per message can be set with
setMaxMessageLength().

CNKObj::
 long getNumMessages();
 long getNumMessagesAdded();
 long getNumMessagesAtLevel(int severity);

The getNumMessages() method returns the total number of messages
stored. The getNumMessagesAdded() gets the number of messages
that have been submitted for storage. This second method will return
a larger value than the first if the number of messages submitted
exceeds getMaxMessages(). This can be used to track something like
the total number of rows dropped due to inappropriate values, while
58

only storing messages for the first few rows. The
getNumMessagesAtLevel() method returns the number of messages
at a specified severity level.

CNKObj::
 const char* getMessage(long i);
 int getMessageSeverity(long i);

The getMessage() method returns the specified message. Its
argument is an index into the list of messages with a range of 0 to
getNumMessages(). The getMessageSeverity() method returns the
severity code for this message.

CNKObj::
 static char* copyString(const char* str);
 static char* copyString(const char* str,
 const char* str2);
 static char* copyString(const char* str, int max_chars);
 static char* copyString(const char* str,
 const char* str2, int max_chars);
 static void releaseString(char* str);

These are useful utility methods for allocating and releasing strings.
copyString allocates a string that is a copy of its argument. The
versions with two char arrays construct a string of the form
"<firstarg>: <secondarg>". The max_chars argument indicates the
maximum number of characters to copy. releaseString releases a
string allocated by copyString. All of these methods detect and
handle NULL arguments correctly: copyString(NULL) just returns NULL,
and releaseString(NULL) does nothing.

These are static class methods, so they can be used anywhere, even
outside of the CNK object classes, with calls such as
CNKObj::copyString(str).

CNKObj::
 static double getDoubleNaN();
 static int isDoubleNaN(double val);

 static double getDoubleNA();
 static int isDoubleNA(double val);

 static long getLevelNumNA();
59

 static int isLevelNumNA(long val);

 static const char* getStringNA();
 static int isStringNA(const char* val);

 static CNKTimeDate getTimeDateNA();
 static int isTimeDateNA(CNKTimeDate val);

These are useful utility methods for accessing the NaN value for
various buffer types, used in Spotfire Miner and Spotfire S+ for
representing NA values. getDoubleNaN() returns the double NaN value.
isDoubleNaN(val) returns true (non-zero) if the argument is an NaN
value, false otherwise. The other methods provide this functionality
for other column types.

CNKObj::
 static double convertLevelNumToDouble(long val);
 static long convertDoubleToLevelNum(double val);
 static const char* convertLevelNumToString(long val);
 static long convertStringToLevelNum(const char* val);
 static CNKTimeDate convertLevelNumToTimeDate(long val);
 static long convertTimeDateToLevelNum(CNKTimeDate val);
 static CNKTimeDate convertDoubleToTimeDate(double val);
 static double convertTimeDateToDouble(CNKTimeDate val);

These methods provide support for conversions between data types.
They support any conversions that do not vary based on a specified
format string.

The convertDoubleToTimeDate() and convertTimeDateToDouble()
methods convert between a double giving the number of days since
January 1, 1970 and a timeDate value. Hours, minutes, and seconds
are the fractional part of the double.

 CNKObj::
 double convertStringToDouble(const char* val);
 const char* convertDoubleToString(double val);
 CNKTimeDate convertStringToTimeDate(const char* val);
 const char* convertTimeDateToString(CNKTimeDate val);

 void setConverter(CNKConverter* val);
 CNKConverter* getConverter();
 static void setDefaultConverter(CNKConverter* val);
60

 static CNKConverter* getDefaultConverter();

These methods support conversions between string and double or
time/date values. Such conversions depend upon a formatting string
that indicates things like whether 01/10/2002 represents January 10,
2002 or October 1, 2002.

Code using a pipeline can create a class extending CNKConverter that
provides this support. Programmers creating Spotfire Miner nodes
will use the methods such as convertStringToDouble(), and will not
use a CNKConverter directly.

CNKObj::
 static void copyPlainToUTFString(
 const char* inputPlainString,
 char* outputUTFString, int maxOutputBytes);
 static void copyUTFToPlainString(
 const char* inputUTFString,
 char* outputPlainString, int maxOutputBytes);
 static void copyWideCharToUTFString(
 const wchar_t* inputWideCharString,
 char* outputUTFString, int maxOutputBytes);
 static void copyUTFToWideCharString(
 const char* inputUTFString,
 wchar_t* outputWideCharString, int maxOutputChars);

String values are typically stored as UTF-8 char arrays using the same
conventions as the Java Native Interface (JNI). This is a format that
uses one, two, or three bytes as needed to represent multibyte
characters in a char array.

Other common standards for representing characters in a char array
are to use a single byte per character or two bytes for every character.
These methods support conversions between a UTF-8 representation,
a single-byte representation (plain string), and a two-byte
representation (wide char string).

CNKObj::
 virtual void setProperty(CNKPropertyInfo* propInfo);
 virtual void getProperty(CNKPropertyInfo* propInfo);

These methods are defined in all of the CNK object classes, to
support the Java-to-C++ communication facility.
61

CNKPropertyInfo Information other than the actual data is stored and exchanged using
properties. A property is a name/value pair where the name uniquely
identifies the piece of information being stored, and the value is the
information being stored.

The methods CNKObj::setProperty and CNKObj::getProperty are
used to set and get property values for an object.

One use for this is to pass parameters from Java to the C++ code
implementing the component. It may also be used to communicate
results such as numeric summaries back to the Java code after
computation is complete.

A property is stored in a CNKPropertyInfo object. CNKPropertyInfo
is defined in CNKPropertyInfo.h with the following methods:

CNKPropertyInfo::
 const char* getPropName();
 int isPropName(char* name);

getPropName() returns the property name for this object.
isPropName(char* name) compares this string to the argument
"name", returning true (non-zero) if they are the same.

CNKPropertyInfo::
 virtual long getPropAsINT32();
 virtual void setPropAsINT32(long val);
 virtual INT64 getPropAsINT64();
 virtual void setPropAsINT64(INT64 val);
 double getPropAsDouble();
 void setPropAsDouble(double val);
 int getPropAsLogical();
 void setPropAsLogical(int val);
 const char* getPropAsString();
 void setPropAsString(const char* val);

These methods get/set the argument to a single long, double, etc.
value.

CNKPropertyInfo::
 CNKBuf* getPropAsCNKBuf();
 void setPropAsCNKBuf(CNKBuf* buf);
 CNKProc* getPropAsCNKProc();
 void setPropAsCNKProc(CNKProc* proc);
62

These methods are similar to getPropAsInt, etc., except that they can
interpret the objects representing pointers to CNKBuf and CNKProc
objects. For getPropAsCNKBuf/getPropAsCNKProc, if the argument is
not a valid CNKBuf/CNKProc, they return NULL.

CNKPropertyInfo::
 virtual CNKPropertyInfo* getNextProp();

Some code will store a series of properties in an array or linked list.
When this is the case, getNextProp() can be used to get the next
property in the list.

CNKPropertyInfo::
 void* getPropAsObject();
 virtual void* getPropAsObjectEnv();
 const char* getPropAsObjectType();
 void setPropAsObject(void* object);

These methods can be used to set and get a C pointer to some
unknown object. With Java, this would be a Java JNI object.They are
passed as void* pointers, and the calling C code must be able to cast
these pointers and interpret them correctly. getPropAsObjectType()
returns a string specifying the particular type of object system that the
properties come from: in the case of Java, this would be the string
"java". Other systems such as Spotfire S+ that may communicate
with this library may pass other types of objects.
getPropAsObjectEnv() returns an environment variable associated
with the object, if the system has such a variable. In Java, this would
be a JNIEnv object.

CNKPropertyInfo::
 void setPropToUnknownPropertyFlag();

This method sets the argument value to a special value that can be
used to detect that a property name has not been found. This is called
in CNKObj::setProperty and CNKObj::getProperty when none of the
properties match.

The normal way to implement setProperty is with code such as the
following:

void CNKProcRandomReader::setProperty(
 CNKPropertyInfo* propInfo) {
63

 if (propInfo->isPropName("seed")) {
 setSeed(propInfo->getPropAsINT32());
 } else if (propInfo->isPropName("total.rows")) {
 setTotalRows(propInfo->getPropAsINT64());
 } else {
 CNKProc::setProperty(propInfo);
 }
}

This code checks the property name against each of the accepted
string values, extracts the argument value as the appropriate type, and
calls an object method to set the appropriate property. If none of the
property names match, the superclass method is called to handle any
other property names. getProperty is implemented in much the
same way:

void CNKProcRandomReader::getProperty(
 CNKPropertyInfo* propInfo) {
 if (propInfo->isPropName("seed")) {
 propInfo->setPropAsINT32(getSeed());
 } else if (propInfo->isPropName("total.rows")) {
 propInfo->setPropAsINT64(getTotalRows());
 } else {
 CNKProc::getProperty(propInfo);
 }
}

This code calls an object method to get the appropriate value, and
calls propInfo->setPropAsXXX to set the first argument appropriately.
As with setProperty, if none of the property names match, the
superclass method is called to handle any other property names.

One downside of the setProperty/getProperty scheme for passing
information between Java and C++ is that the Java code needs to use
the same property names as the C++ methods (like "total.rows" in
the example above). Maintaining consistency between the C++
property names and the ones used by the Java functions is a possible
source of error. Strictly speaking, the documentation of a subclass of
CNKObj should include documentation for the property names that it
can interpret via get/setProperty.
64

CNKBuf,
CNKBufReader,
CNKBufWriter:
Data Buffers

The three classes CNKBuf, CNKBufReader, and CNKBufWriter together
are used to implement a first-in-first-out (FIFO) data buffer containing
multiple rows, where each row contains multiple columns of data.
The different columns can contain data of different types.

A CNKBuf object contains the actual data in the buffer. In addition, it
contains information about the number and types of the columns.
CNKBuf has methods for accessing the column type information, such
as the list of level strings for a given factor column.

CNKBufReader and CNKBufWriter objects are used to read or write the
data within a CNKBuf. These objects are used, rather than accessing
the CNKBuf directly, because there may be multiple CNKProc objects
reading a given CNKBuf at a time. Each of the CNKBufReader objects
represents a connection between a particular CNKBuf and a particular
CNKProc. The same mechanism is used for writing to a CNKBuf, even
though currently only one CNKBufWriter can write to a given CNKBuf.

CNKBufReader and CNKBufWriter objects cannot be created
independent of a CNKBuf or CNKProc. They are created by passing a
CNKBuf object to the CNKProc::setInputBuf or
CNKProc::setOutputBuf methods, which creates the appropriate
CNKBufReader or CNKBufWriter object, and establishes the
connections between the CNKBufReader (or CNKBufWriter), the
CNKProc, and the CNKProc objects. When a CNKBuf or CNKProc object
is deleted, these connections are automatically removed.

The CNKBuf class is the heart of the pipeline architecture. The design
of the data-manipulation components (in the CNKProc class) is very
simple, to make it as easy as possible to create new components.

CNKBuf objects, used to coordinate data flow between CNKProc objects,
are somewhat more complicated. A CNKProc component must follow
certain rules when accessing a CNKBuf object, in order for this
coordination to work. Loosely speaking, a CNKBuf can be viewed as a
first-in-first-out (FIFO) buffer of data rows. One CNKProc can write a
series of data rows into the CNKBuf (using a CNKBufWriter object), and
one or more other CNKProc objects can read out these data rows in the
same order (using CNKBufReader objects). Things are a bit more
complicated, because (1) a given CNKBuf has a limited size, so it can
only store a certain number of written data rows at a time, and (2) the
pipeline architecture is designed so that all CNKBuf methods return
65

immediately: it does not support "suspending" a CNKBuf data access
method, if the data is not currently available. To handle these
limitations, components accessing a CNKBuf must follow these rules:

1. Before writing data to a CNKBuf (using a CNKBufWriter), the
CNKProc must reserve space for the data, and wait for the
space to become available. Once the space is available, data
can be written into it, and then some or all of the written rows
must be released.

2. Before reading data from a CNKBuf (using a CNKBufReader), the
CNKProc must request a certain number of data rows, and wait
for them to become available. Once the data is available, the
block of data can be read, and then some or all of the data
rows must be released.

The CNKBuf is designed so that the CNKBuf's associated CNKBufWriter
has to wait until all of the associated CNKBufReader objects have
consumed the written data rows, before that storage can be used for
more data. Given this design, if a CNKBuf is set up with no readers,
then the CNKBuf will fill up with data and then stop, since no one will
ever read the data. It has been useful to make an exception to the
rules in this case: if a CNKBuf has no readers, then it acts like there is
an attached reader that automatically reads all data rows as they are
written.

CNKBuf
Subclasses:
CNKMemoryBuf and
CNKBackingFileBu
f

As far as a proc object is concerned, all bufs (and buf readers and buf
writers) are the same, implementing the same methods. In actuality,
there are several different types of buf classes, implemented as
subclasses of CNKBuf. CNKBuf does not have a public constructor, so
creating a buf involves creating an instance of one of these subclasses.

The CNKMemoryBuf class implements a CNKBuf with a FIFO buffer of
rows in memory. Procs must write and read rows sequentially to a
CNKMemoryBuf, as described above. The only method specific to a
CNKMemoryBuf is the constructor:

CNKMemoryBuf::
 CNKMemoryBuf();

The CNKBackingFileBuf class implements a CNKBuf with an associated
file that contains the data in the buffer. It can be used to support
procs that need to read their input data multiple times, or in random
access order. This class is described in more detail below.
66

When a CNKMemoryBuf or CNKBackingFileBuf, is passed to one of the
CNKProc::setInputBuf or CNKProc::setOutputBuf methods, this
actually creates an instance of CNKMemoryBufReader or
CNKBackingFileBufReader (subclasses of CNKBufReader) or
CNKMemoryBufWriter or CNKBackingFileBufWriter (subclasses of
CNKBufWriter). These subclasses implement exactly the same
methods as their parent classes, so it is not normally necessary to be
aware of the exact class created.

CNKBuf Methods The main buffer class is CNKBuf.

CNKBuf::
 virtual ~CNKBuf();
 virtual void init();

These are the CNKBuf destructor and init() methods. A CNKBuf is
created with new CNKMemoryBuf() or new CNKBackingFileBuf() (as
described above), then the properties of the columns and the readers
and writers are created, and then init() is called to initialize it, which
allocates the storage for the buffer data.

CNKBuf::
 virtual int isCNKMemoryBuf();
 virtual int isCNKBackingFileBuf();
 virtual CNKMemoryBuf* getCNKMemoryBuf();
 virtual CNKBackingFileBuf* getCNKBackingFileBuf();

These methods can be used if it is necessary to determine the
particular class used to implement a CNKBuf. isCNKMemoryBuf() and
isCNKBackingFileBuf() return non-zero if the object is of the
paticular subclass. getCNKMemoryBuf() and getCNKBackingFileBuf()
return the coerced object if it has the given subclass, otherwise they
return NULL.

CNKBuf::
 virtual int isMultiPass();
 virtual int isRandomAccess();

These methods return non-zero if the buf supports multi-pass access,
or random-access by readers. Currently, these both return 1 for
CNKBackingFileBuf, and 0 for CNKMemoryBuf. In the future, there
may be other classes that support multi-pass access but not random-
access.
67

CNKBuf::
 void setNumRows(long numRows);
 void setNumColumns(int cols);
 long getNumRows();
 int getNumColumns();

Set/get the number of rows and columns that can be stored in the
CNKBuf at once. This should not be changed after calling init(),
when the storage is actually allocated.

CNKBuf::
 int getNumReaders();
 int getNumWriters();
 CNKBufReader* getBufReader(int index);
 CNKBufWriter* getBufWriter(int index);
 CNKProc* getBufReaderProc(int index);
 CNKProc* getBufWriterProc(int index);

A CNKBuf object can have multiple CNKBufReader and CNKBufWriter
objects (though currently it is an error to have more than one
CNKBufWriter). These methods can be used to find out the number of
readers and writers, and access them, and access the CNKProc objects
they are linked to.

The getBufReaderProc and getBufWriterProc methods can be used
to go from a CNKBuf to the connected CNKProc objects.
CNKProc::getInputBuf and getOutputBuf will go in the other
direction. Using both of these, one can traverse a pipeline graph,
without dealing directly with the CNKBufReader and CNKBufWriter
objects between the CNKBuf and CNKProc objects.

CNKBuf::
 void setColumnName(int colNum, const char* name);
 const char* getColumnName(int colNum);

Each column in a CNKBuf has a name. These methods are used to
set/get the column name of the specified CNKBuf column. colNum is
the column number, from 0 through getNumColumns()-1. A column
name may be NULL.

CNKBuf::
 enum column_type { column_type_double,

 column_type_factor,
68

 column_type_string,
 column_type_timeDate};

 void setColumnType(int colNum, int typeNum);
 int getColumnType(int colNum);
 int columnTypeIsDouble(int colNum);
 int columnTypeIsFactor(int colNum);
 int columnTypeIsString(long colNum);
 int columnTypeIsTimeDate(long colNum);

Each column in a CNKBuf has a column type. The possible types are
identified by the integer values CNKBuf::column_type_double,
CNKBuf::column_type_factor, CNKBuf::column_type_string, or
CNKBuf::column_type_timeDate. The type of a CNKBuf column can
be set/get with setColumnType and getColumnType. The methods
columnTypeIsDouble, etc. return true (non-zero) if the specified
column is of type column_type_double, etc.

If the column type is CNKBuf::column_type_double, each value in the
column is interpreted as a floating point number. Missing values are
represented as the special NaN value returned by
CNKObj::getDoubleNaN().

If the column type is CNKBuf::column_type_factor, each value in the
column represents one of a list of string "factor levels", or the missing
value. The implementation is complicated. The actual values in the
CNKBuf are stored as double values (and NaN values). In order to
interpret these double values as factor levels, the CNKBuf maintains
for each column a list of factor level strings. As new factor values are
stored, this list is grown. The actual double values stored in the
CNKBuf are the positions of the corresponding factor levels in the level
list (0.0, 1.0, ...). Methods for accessing the factor levels for a column
are described below.

If the column type is CNKBuf::column_type_string, each value is a
char array representing a string. Typically values are stored in the
UTF-8 format. As the pipeline itself does not manipulate the values
of the char arrays, it is possible to pass around strings using other char
array conventions.

If the column type is CNKBuf::column_type_timeDate, each value is
stored as a long representing the number of milliseconds since an
origin of January 1, 1970. This is the same origin used by Java. The
69

integer part of this number is the number of days, and the fractional
part represents a fraction of a day, e.g. the hours, minutes, and
seconds.

CNKBuf::
 void setNumLevels(int colNum, int i);
 int getNumLevels(int colNum);
 void setLevelName(int colNum, int i,
 const char* level_name);
 const char* getLevelName(int colNum, int i);
 void setMaxAutoLevels(int colNum, int val);
 int getMaxAutoLevels(int colNum);
 void setOverflowLevel(int colNum, const char* val);
 const char* getOverflowLevel(int colNum);

These methods access the factor level list associated with each CNKBuf
column. Note that this list is associated with every column, even if it
does not have type CNKBuf::column_type_factor.

At any time, each column has a certain number of factor levels. The
size of this list can be accessed with setNumLevels and getNumLevels,
and individual level names can be accessed with setLevelName and
getLevelName. Normally, there is no need to call setNumLevels
explicitly: If setLevelName is called to set a level name beyond the
end of the list, it is automatically extended.

The set/getMaxAutoLevels and set/getOverflowLevel methods
access additional properties associated with each column that control
how new factor levels are created. If you know all of the possible
factor levels that can be read ahead of time, you can simply set up a
factor column with these levels. However, if you don't know all of the
possible factor levels, there is a potential problem. The pipeline is
designed to be used for problems with very large amounts of data. If
every new factor level that appears is simply added to the level list,
then it is possible that the system would allocate more and more
different level strings, until you run out of memory. Even if the
number of possible levels is relatively small, there are situations
where it is useful to restrict it even further: some operations such as
tree modeling and crosstabs can take massive amounts of time or
space for variables with many factor levels.
70

The "MaxAutoLevels" property determines the maximum number of
levels that will be automatically created. The actual number of levels
in a factor can be set larger than this, by explicitly setting the level
strings. The default value of this property is 10. A simple way to
disable auto-creation of factors is by setting this property to 0.

The "OverflowLevel" property is used when handling a new factor
level. If adding the new level would cause the number of levels to
exceed the "MaxAutoLevels" property, the "OverflowLevel" string is
used instead. For example, if the levels are "yes" and "no",
"MaxAutoLevels" is 2, and "OverflowLevel" is "yes", then all other
factor values will map to "yes". If the overflow level is not one of the
existing levels, it is added, but it is done soon enough so that the total
number of levels will not exceed "MaxAutoLevels". If the
"OverflowLevel" property is "", the default, then overflow levels are
mapped to NA.

CNKBuf::
 double mapLevelToDouble(int colNum,
 const char* level_name);
 const char* mapDoubleToLevel(int colNum, double val);

These methods handle mapping between double values and factor
level strings, for the specified CNKBuf column, which may or may not
actually have the type CNKBuf::column_type_factor.

mapLevelToDouble takes a string, and returns the double value used to
represent this factor level. If the string does not already appear in the
factor level list for this column, it may be added. This method uses
the "MaxAutoLevels" and "OverflowLevel" properties of the column
to determine whether to create a new factor level.

mapDoubleToLevel takes a double, presumably retrieved from a factor
column, and returns the factor level string corresponding to that
value. If the double is a NaN value, or if the value doesn't correspond
to any factor level, this returns NULL.

CNKBuf::
 int getEOF();

Each CNKBuf has a single EOF flag, can be set (via
CNKBufWriter::setEOF()) when a CNKProc has written all of the data
to the CNKBuf that it ever will. Normally, a CNKProc reading from a
71

CNKBuf will call CNKBufReader::getEOF() to check whether there EOF
has been set. CNKBuf::getEOF() gives the same information: it
returns true (non-zero) if the EOF flag has been set for the CNKBuf.

CNKBuf::
 virtual INT64 getTotalNumRows();

If the CNKBuf knows the total number of rows in its data set (it has
reached the EOF of a sequential stream, or it has a backing file), then
this method returns the total number of rows. If it doesn't know this
information, it returns -1.

CNKBuf::
 virtual long getMinRowsToAvoidDeadlock();
 virtual int isDeadlockPossible();

When a CNKProc is executed, it reads data rows from one or more
input CNKBufReader objects, and writes data rows to one or more
CNKBufWriter objects. Before reading and writing these rows, it must
request a certain amount of rows, by calling
CNKBufReader::setRequestRows or CNKBufWriter::setRequestRows, as
described below.

When calling the setRequestRows methods, a CNKProc should not ask
for more rows than the size of the CNKBuf, since this request can never
be satisfied. This is not enough, though. There is another situation
where a problem can occur, even if the request is for fewer rows than
the size of the CNKBuf.

Suppose that a CNKBuf has 100 rows. Further suppose that this CNKBuf
has one CNKProc that wants to write 60 rows at a time, and another
CNKProc that wants to read 80 rows at a time. When the pipeline is
executed, the writing CNKProc requests space for writing 60 rows, the
request is satisfied (there are 100 free rows), and the 60 rows are
written. Now, there is a problem. The reading CNKProc will request
80 rows, but this cannot be satisfied: there are only 60 rows available
to read. The writing CNKProc will request space for writing an
additional 60 rows, but this cannot be satisfied: there are only 40
available rows. Therefore, both the reading and the writing CNKProc
will wait forever for their row requests to be satisfied. This is a
deadlock.
72

To avoid this problem, the CNKBuf must have at least as many rows as
the largest possible CNKBufWriter::setRequestRows value plus the
largest possible CNKBufReader::setRequestRows value (from the
multiple readers).

In order to determine whether this is true, it is necessary to know the
maximum number of rows a given CNKProc will request from its input
or output. CNKProc maintains two properties, the maximum number
of rows that will be requested from any of its inputs (accessed with
CNKProc::getNumRows), and the maximum number of rows spaces
that will be requested from any of its outputs (accessed with
CNKProc::getOutputNumRows).

 The getMinRowsToAvoidDeadlock and isDeadlockPossible methods
are used to check whether the CNKBuf has enough rows to avoid this
deadlock. getMinRowsToAvoidDeadlock() returns the minimum
number of rows that would be necessary to avoid deadlock.
isDeadlockPossible() returns true (non-zero) if this value is less than
CNKBuf::getNumRows().

isDeadlockPossible() is called from CNKBuf::init(), to check
whether a deadlock is possible. If it is, the error string is set for the
CNKBuf.

CNKBackingFileB
uf Methods

CNKBackingFileBuf is a subclass of CNKBuf that implements a data
buffer with an associated "backing file" on disk. Whereas
CNKMemoryBuf only supports procs that sequentially read their input
data, CNKBackingFileBuf can be used with procs that need to scan
through their input data multiple times, or access it in random order.

A CNKBackingFileBuf can be used in two ways,

1. as a file writer, or

2. as a file reader.

In the first case, the backing file is initially empty, the
CNKBackingFileBuf has a single buf writer, and zero or more
sequential buf readers. As the pipeline executes, the buf writer writes
data to the CNKBackingFileBuf, which writes it to the backing file, and
also passes it to any sequential readers. In the second case, the
backing file is an existing data file, the CNKBackingFileBuf has no buf
writer, and it has exactly one buf reader. As the pipeline executes, the
73

single buf reader can access the data sequentially, or read the data in
multiple passes or via random access. As different parts of the data
are accessed, they are read into memory from the backing file.

A CNKBackingFileBuf backing file (also called a "data cache file")
contains a packed binary representation of the data values. In order
for a CNKBackingFileBuf to read an existing data cache file, it must
be set with the same column specification as was used to create it, so it
knows the number of columns, factor levels, etc.

CNKBackingFileBuf::
 CNKBackingFileBuf();
 virtual ~CNKBackingFileBuf();
 virtual void init();

These are the CNKBackingFileBuf constructor, destructor and init()
methods. A CNKBackingFileBuf object is created with
CNKBackingFileBuf(), then the properties of the columns and the
readers and writers are created, and then init() is called to initialize
it, which allocates the storage for the buffer data, and opens the
backing file.

CNKBackingFileBuf::
 void setBackingFileName(const char* nam);
 const char* getBackingFileName();

Access the name of the backing file. If this is set to NULL, an error is
set on init().

CNKBackingFileBuf::
 void setBackingFileTotalRows(INT64 val);
 INT64 getBackingFileTotalRows();

Set/get the initial number of rows in the backing file. When using a
CNKBackingFileBuf to write a backing file, this should be set to 0.
When using a CNKBackingFileBuf to read a backing file, this should
be set to the number of rows of data in the file.

CNKBackingFileBuf::
 long getBackingFileRowBytes();
 long getBackingFileColumnOffsetBytes(int colNum);
 int getBackingFileColumnWidthBytes(int colNum);
74

These methods return information about the storage of the data in the
backing file. getBackingFileRowBytes returns the number of bytes
for each row. getBackingFileColumnOffsetBytes returns the offset in
bytes from the beginning of the row to the specified column data.
getBackingFileColumnWidthBytes returns the number of bytes used
to store the data for the specified row.

CNKBackingFileBuf::
 void closeBackingFile();

This method closes the backing file if it is open.

CNKBufReader
Methods

Here are the methods for reading a CNKBuf using a CNKBufReader.
Note that there is no public constructor for a CNKBufReader object (it
is created automatically in CNKProc::setInputBuf), and no public
init() method (it is initialized in CNKBuf::init()).

CNKBufReader::
 CNKBuf* getBuf();
 CNKProc* getProc();

Returns the CNKBuf or CNKProc linked by this CNKBufReader.

 CNKBufReader::
 virtual void setRequestRows(long numRows);
 virtual long getRequestRows();

A CNKProc calls setRequestRows to set the number of data rows that
are desired. setRequestRows can be called multiple times, to adjust
this number up or down. getRequestRows returns the last row
request. When the CNKBuf is initialized, the row request number is
initialized to zero.

When a CNKProc calls setRequestRows, if numRows is greater than the
total number of rows in the CNKBuf, or if numRows is greater than
CNKProc::getNumRows(), then an error string is set for the CNKProc.

CNKBufReader::
 virtual long getRowsReady();

getRowsReady returns the number of data rows that are available to
read. At any given time, it may be less than the row request, equal to
it, or even greater (if there happen to be more rows available than the
request). However, the programmer can depend on it's always
75

increasing, until releaseRows is called to release some of the read
data rows. Therefore, it is safe to save the value returned by
getRowsReady, and then process that many rows, without calling it
again to check.

Note that different CNKBufReader objects associated with the same
CNKBuf may have different numbers of rows ready at any given time.
They will all read the same series of data rows, but one CNKBufReader
may read it in different chunk sizes than another.

CNKBufReader::
 virtual int getEOF();

A CNKProc writing a stream of data into a CNKBuf can set an EOF flag
after it has written all of the data to the CNKBuf that it ever will, to
terminate the series of data rows. getEOF() returns true (non-zero) if
the current available chunk includes the end of the data. This is still
meaningful when reading the data in a random access mode: that
getEOF() returns true (non-zero) if and only if the current chunk
defined by {getChunkPosition(), getRowsReady()} contains the end
of the data.

CNKBufReader::
 virtual INT64 getTotalNumRows();

If the CNKBuf knows the total number of rows in its data set (it has
reached the EOF of a sequential stream, or it has a backing file), then
this method returns the total number of rows. If it doesn't know this
information, it returns -1.

CNKBufReader::
 virtual int isReady();

isReady returns true (non-zero) if the CNKBuf is ready to be read.
Normally, this is true if getRowsReady() is greater than or equal to
getRequestRows(). It also returns true if getEOF() is true, since the
CNKBuf is as ready as it ever will be: it will never have any more rows
available. A CNKProc calling isReady should check for this case.
isReady() will always return false (zero) if the error string of the
CNKBuf is not NULL: in this case, the CNKProc should not try accessing
the row data.

CNKBufReader::
76

 virtual double getDouble(long rowNum, int columnNum);
 virtual long getLevelNum(long rowNum, long colNum);
 virtual const char* getString(long rowNum,
 long colNum);
 virtual CNKTimeDate getTimeDate(long rowNum,
 long colNum);

Returns a single value stored in the CNKBuf at a given row and
column. rowNum is the row number in the currently-accessible chunk
of data rows: the first row is always accessed with rowNum==0. rowNum
should be less than getRowsReady(). columnNum is the column
number for the data, from 0 to CNKBuf::getNumcolumns()-1.

These methods respectively return a value for use as a double, factor,
string, or timeDate.

CNKBufReader::
 virtual void getDoubleArray(long firstRowNum,
 int columnNum, long numRows, double* ptr);

This method copies multiple values from a column of values stored in
the CNKBuf into the array *ptr. columnNum identifies the column in
CNKBuf of the data being copied, from 0 to
CNKBuf::getNumcolumns()-1. firstRowNum is the row number of the
first row to copy in the currently-accessible chunk of data rows: it
should be zero or greater. numRows is the number of values to copy.
firstRowNum + numRows should be less than getRowsReady().

CNKBufReader::
 virtual void releaseRows(long numRows);

After reading up to getRowsReady() data rows (using the methods
getDouble, etc.), releaseRows(numRows) is called to release the first
numRows rows of the available rows. A CNKProc may release all of the
getRowsReady() data rows at once, or fewer rows. If fewer rows are
released than were requested, this is a simple way to access a moving
window over the data.

If numRows is less than zero, or greater than getRowsReady(), then an
error string is set for the CNKProc using this CNKBufReader.

CNKBufReader::
 virtual void releaseAll();
77

releaseAll() should be called when the reader is no longer
interested in reading this data. After calling releaseAll(), no
requests will be satisfied. This method allows a reader to "disconnect"
from the buf. This is needed for multipass or random-access readers,
to tell the buf that they are through reading, since it isn't enough that
EOF has been reached. This should be called from streaming readers,
too, when they set themselves "done", in case there are other
resources that can be released.

CNKBufReader::
 virtual INT64 getChunkPosition();

At any time, a CNKBufReader can access a "chunk" of data rows from a
potentially-very-large series of data rows. getChunkPosition returns
the row number of the first row in the chunk, counted from the start
of the series when CNKBuf::init() was called. If the data is being
read sequentially, this value is the same as the sum of all releaseRows
calls since CNKBuf::init() was last called.

CNKBufReader::
 virtual void setChunkPosition(INT64 where);

The setChunkPosition method sets the position of the beginning of
the current chunk. This may change the value returned by
getRowsReady(). For random-access bufs, this can be set to any value,
forward or backward. For multi-pass bufs, this can be set forward, or
to 0 to reset the stream. Setting this backwards (except to 0) will
cause a buf error. For normal sequential streaming bufs, setting this
backwards will cause a buf error.

For any type of access, setChunkPosition can be used to skip ahead
in the data stream. To skip forward to the EOF, call
setChunkPosition(max_int64).

CNKBufReader::
 virtual int isMultiPass();

 virtual int isRandomAccess();

These methods return non-zero if this CNKBufReader CNKBuf supports
multi-pass access, or random-access.
78

CNKBufWriter
Methods

Most of the methods for CNKBufWriter are similar to those for
CNKBufReader. Like the other class, where is no public constructor for
a CNKBufWriter object (it is created automatically in
CNKProc::setOutputBuf), and no public init() method (it is
initialized in CNKBuf::init()).

CNKBufWriter::
 CNKBuf* getBuf();
 CNKProc* getProc();

Returns the CNKBuf or CNKProc linked by this CNKBufWriter.

CNKBufWriter::
 virtual void setRequestRows(long numRows);
 virtual long getRequestRows();

A CNKProc calls setRequestRows to request space for writing a given
number of data rows. This number must be less than or equal to the
total number of rows in the CNKBuf. setRequestRows can be called
multiple times, to adjust this number up or down. getRequestRows
returns the last row request.

When a CNKProc calls setRequestRows, if numRows is greater than the
total number of rows in the CNKBuf, or if numRows is greater than
CNKProc:: getNumRows(), then an error string is set for the CNKProc.

CNKBufWriter::
 virtual long getRowsReady();

getRowsReady returns the number of data rows that are available to
write. At any given time, it may be less than the row request, equal to
it, or even greater (if there happen to be more rows available than the
request). However, the programmer can depend on it's always
increasing, until releaseRows is called to release some of the read
data rows. Therefore, it is safe to save the value returned by
getRowsReady, and then process that many rows, without calling it
again to check.

CNKBufWriter::
 virtual int isReady();
79

isReady returns true (non-zero) if the CNKBuf is ready to be written to.
Normally, this is true if getRowsReady() is greater than or equal to
getRequestRows(). isReady() will always return false (zero) if the
error string of the CNKBuf is not NULL: in this case, the CNKProc should
not try accessing the row data.

CNKBufWriter::
 virtual void setDouble(long rowNum, int columnNum,
 double val);
 virtual void setLevelNum(long rowNum, long colNum,
 long val);
 virtual void setString(long rowNum, long colNum,
 const char* val);
 virtual void setTimeDate(long rowNum, long colNum,
 CNKTimeDate val);

setDouble stores a single double value into the CNKBuf at a given row
and column. rowNum is the row number in the currently-accessible
chunk of data rows: the first row is always accessed with rowNum==0.
rowNum should be less than getRowsReady(). columnNum is the column
number for the data, from 0 to CNKBuf::getNumcolumns()-1.

These methods respectively set a value as a double, factor, string, or
timeDate.

CNKBufWriter::
 virtual void setConvertDouble(long rowNum,
 int columnNum, double val);
 virtual void setConvertFactor(long rowNum,
 int columnNum, const char* level);
 virtual void setConvertString(long rowNum, long colNum,
 const char* level);

setConvertDouble, setConvertFactor, and setConvertString are
useful methods for setting a given item in the CNKBuf to the specified
double or factor level value. These methods check whether the
column type is double or factor, and converts the given value if it is
not. In some cases, the conversion may not be meaningful, but it tries
to do something reasonable.

With setConvertDouble, if the column is actually a factor column, the
double is converted into a string (such as "1.2"), and that string is
used as the factor level. If there are only a few different double values
stored in this way, the resulting factors may be useful.
80

With setConvertFactor, if the column is actually a double column,
the argument is registered as a factor level for the column (by calling
CNKBuf::mapLevelToDouble), and the value associated with that factor
level is assigned. The order of the values is not particularly
meaningful.

CNKBufWriter::
 virtual void setDoubleArray(long firstRowNum,
 int columnNum, long numRows, double* ptr);

This method copies multiple values from the array *ptr into a
column of values stored in the CNKBuf. columnNum identifies the
column in CNKBuf of the data being copied, from 0 to
CNKBuf::getNumcolumns()-1. firstRowNum is the row number of the
first row to copy in the currently-accessible chunk of data rows: it
should be zero or greater. numRows is the number of values to copy.
firstRowNum + numRows should be less than getRowsReady().

CNKBufWriter::
 virtual void releaseRows(long numRows);

After writing up to getRowsReady() data rows (using the methods
such as setDouble, etc.), releaseRows(numRows) is called to release
the first numRows rows of the available rows, so they can be read by
other CNKProc objects. A CNKProc may release all of the
getRowsReady() data rows at once, or fewer rows.

If numRows is less than zero, or greater than getRowsReady(), then an
error string is set for the CNKProc using this CNKBufWriter. In
addition, if this is called after the EOF flag has been set with setEOF, an
error string is set for the CNKProc.

CNKBufWriter::
 virtual void setEOF();

setEOF() should be called after a CNKProc has written all of the data to
the CNKBuf that it ever will, and called releaseRows to release these
rows. This sets a flag in the CNKBuf, so the CNKProc objects reading
this CNKBuf will know not to wait for any more data. After this is
called, releaseRows should never be called again: if it is, an error
string is set for the CNKProc.

CNKBufWriter::
81

 virtual INT64 getChunkPosition();

At any time, a CNKBufWriter can write a "chunk" of data rows in a
potentially-very-large series of data rows. getChunkPosition returns
the row number of the first row in the chunk, counted from the start
of the series when CNKBuf::init() was called. This value is the same
as the sum of all releaseRows calls since CNKBuf::init() was last
called.

CNKBufWriter::
 virtual void copyBufData(CNKBufReader* rdr,
 long inFirstRowNum, long inFirstColNum,
 long outFirstRowNum, long outFirstColNum,
 long numRows, long numColumns = 1);

The copyBufData() method copies the values in a specified range of
rows and columns from this writer to the specified reader.

CNKProc Methods All data processing components should be derived from CNKProc,
which defines many methods for accessing CNKBuf objects as inputs
and outputs, and managing the execution of the proc in a pipeline.
Many of the CNKProc methods are virtual methods, so that subclasses
can redefine them.

CNKProc::
 CNKProc();
 virtual ~CNKProc();
 virtual void init();

These are the CNKProc constructor, destructor, and init() methods.
Normally, there is no reason to construct a plain CNKProc, since it
can't actually do any processing by itself. Instead, one would create
one of the subclasses of CNKProc, designed to perform a particular
data processing task.

When designing a new subclass for CNKProc, the subclass constructor
should call the CNKProc base class constructor, using a form like:

CNKProcCount::CNKProcCount() : CNKProc()
{

....
}

82

Likewise, the subclass init method should call the CNKProc::init(),
as follows:

void CNKProcCount::init()
{

CNKProc::init();
....

}

The destructor ~CNKProc() will be called automatically after the
destructor of a derived class. It is not necessary to add any special
declaration or call. ~CNKProc() removes any links to input or output
CNKBuf objects, deleting any existing CNKBufReader or CNKBufWriter
objects.

CNKProc::
 void setInputBuf(int index, CNKBuf* buf);
 void setOutputBuf(int index, CNKBuf* buf);
 int getNumInputs();
 int getNumOutputs();
 CNKBuf* getInputBuf(int index);
 CNKBuf* getOutputBuf(int index);
 CNKBufReader* getInputBufReader(int index);
 CNKBufWriter* getOutputBufWriter(int index);

These are the methods a CNKProc uses for accessing its input and
output CNKBuf objects. Any CNKProc can have any number of inputs
and outputs. They are referenced by index number, starting from 0.

setInputBuf and setOutputBuf create an input or output, creating a
CNKBufReader or CNKBufWriter to represent the link between the
CNKProc and the specified CNKBuf. This is the only way to create a
CNKBufReader or CNKBufWriter. If the input or output index already
has an assigned CNKBuf, it is removed first (destroying the
corresponding CNKBufReader or CNKBufWriter), before creating a new
one. If the buf argument is NULL, any existing link is destroyed, and
nothing is left in its place.

getNumInputs and getNumOutputs return the current number of input
and output CNKBufs. Note that there is no method for explicitly
setting the number of inputs and outputs: the number of inputs or
outputs is defined as the largest index of a non-NULL input or output.
If existing links are removed, these numbers may decrease.
83

After inputs and outputs have been created, they can be accessed with
getInputBuf and getOutputBuf (returning the linked CNKBuf objects),
and getInputBufReader and getOutputBufWriter (returning the
CNKBufReader or CNKBufWriter objects for the link). These methods
check the validity of their index argument: if the index is invalid, they
will return NULL.

CNKProc::
 virtual void setNumRows(long val);
 virtual long getNumRows();
 virtual void setOutputNumRows(long val);
 virtual long getOutputNumRows();

CNKProc maintains two properties, the maximum number of rows that
will be requested from any of its inputs (accessed with set/
getNumRows), and the maximum number of rows spaces that will be
requested from any of its outputs (accessed with set/
getOutputNumRows). These properties should be set when a CNKProc is
created. The values of these properties are used by
CNKBuf::getMinRowsToAvoidDeadlock() and
CNKBuf::isDeadlockPossible() to determine whether the CNKBuf is
large enough to avoid deadlock during pipeline execution.

Many CNKProc objects take an input chunk, process it, and write an
output chunk with the same number of rows. In cases like these, the
getOutputNumRows value should be the same as the getNumRows value.
To handle this case more easily, if the "OutputNumRows" value is less
than zero (the default), getOutputNumRows() will simply return the
value of getNumRows(). Therefore, many CNKProc objects will only
need to call setNumRows.

CNKProc::
 virtual void execute();
 virtual int isReady();
 virtual void setDone(int val);
 virtual int isDone();

These methods determine how the pipeline engine executes the
CNKBuf. Derived classes redefine CNKProc::execute(), and possibly
the other methods, to implement their particular data processing
behavior. This set of methods is deliberately small, to make it easier
to define new components.
84

At a rough level of detail, the pipeline engine works by repeatedly
scanning through all of the CNKProc objects. For each CNKProc, the
engine calls CNKProc::isReady(). If this returns true (non-zero), then
CNKProc::execute() is called to execute the CNKProc once. The
engine repeatedly processes all of the CNKProc objects in this way,
until none of them are "ready", indicating that either they are done
processing, or there is a problem.

setDone and isDone access an internal flag, indicating whether the
CNKProc is done processing all of its data, and need never be executed
again. The execute method would normally call setDone(1) after it
had processed all available data from its inputs, and the input CNKBuf
objects had all reached their EOF (according to
CNKBufReader::getEOF()).

The default definition of execute() does nothing. The default
definition of isReady() returns true (non-zero) if getError() is NULL,
isDone() is false, and all of the input and output bufs are ready,
meaning that their row requests are satisfied. Creating a new CNKProc
means at least defining a new execute() method, and possibly a new
isReady() method. The details of writing an execute() method that
accesses its inputs and outputs correctly is described in a section
below.

CNKProc::
 virtual INT64 getRowsDone();
 virtual void setRowsDone(INT64 val);
 virtual void incrementRowsDone(long rows);

Each CNKProc maintains a field counting the number of rows that
have been processed, initialized to zero in init(). The current value
is accessed by getRowsDone(). This value is normally changed by
calls from execute() to setRowsDone or incrementRowsDone. This
concept is not well defined. In particular, it is unclear what this
means when there are multiple inputs. Currently, this is used
primarily for debugging, to check how much data is flowing through a
CNKProc.

CNKProc::
 virtual long getExecuteCount();
 virtual void setExecuteCount(long val);
 virtual void incrementExecuteCount();
85

Each CNKProc contains a field counting the number of times that it has
been executed. This field is incremented by the pipeline engine,
which calls incrementExecuteCount(). The current value, retrieved
by getExecuteCount(), can be useful during debugging.

CNKProc::
 virtual void checkBufs(int inputs, int outputs);
 virtual void checkBufs(int minInputs, int maxInputs,

 int minOutputs, int maxOutputs);

These methods are useful utility methods that can be called from the
init() method to check the number of inputs and outputs that have
been defined. If they wrong number is found, the error string of the
CNKProc is set to an error.

For the two-argument method, if the number of inputs and outputs is
not exactly the number specified, the error string is set.

For the four-argument method, the number of inputs and outputs
must be in the specified ranges. For example, checkBufs(0,2,1,1)
checks that the number of inputs is 0, 1, or 2, and the number of
outputs is exactly 1.

CNKProc::
 virtual long executeRequestRows();
 virtual void executeReleaseRows(long rows);

These methods are useful utility methods that handle the most
common input and output manipulation from an execute() method.
Using these methods, many simple CNKProc execute() methods can
be defined in only a few lines.

The operation of these methods, and how they can be used in a
custom execute() method, are described below.

Creating a
Subclass of
CNKProc

Creating a new subclass of CNKProc requires defining a new init()
and execute() method, and possibly a new isReady() method, as
well as creating new methods specific to the new class. The pipeline
is informed of the class’s existence using a special macro.

CNK_DEFINE_ACCESSIBLE_CLASS Macro

The function for creating a new object of a class is created by using
the macro CNK_DEFINE_ACCESSIBLE_CLASS (defined in
CNKPropertyInfo.h, which is included by CNKObj.h). Given the name
86

of a class, this creates and exports a regular C function (with a long,
ugly name including the class name) that creates an instance of that
class. For example, CNKProcRandomReader.cpp contains the line:

 CNK_DEFINE_ACCESSIBLE_CLASS(CNKProcRandomReader)

The init() Method

If a subclass of CNKProc redefines the init() method, the redefined
init() method should start by calling its superclass method:
CNKProc::init().

Most init() methods should check that the CNKProc has the right
number of input and output CNKBufs. This is most easily done by
calling CNKProc::checkBufs.

The init() method performs any initialization that the object
requires, based on the values of any properties that have been set.
Some of these properties may be common to all CNKProc objects, such
as the input and output bufs (accessed with getNumInputs, etc), and
the number of rows (accessed with getNumRows, etc). Some properties
may be specific to this particular class. For example, a file reader
object would have methods for setting properties such as the file
name, file type, etc. Within the init() method, these properties are
used to initialize any internal data structures required to execute the
object.

Although the main data storage mechanism for the TIBCO Spotfire
Pipeline is the CNKBuf data structure, it is also possible to allocate and
use storage within a given CNKProc object. For example, a model-
building CNKProc may allocate internal storage for accumulating and
processing the data being modeled. If these internal data structures
are of a fixed size, they can be specified as part of the CNKProc
subclass instance variables. If the internal data structures can have
different sizes depending on the number of columns and rows of the
inputs, then they could be allocated dynamically, within the init()
method. In this case, the dynamically-allocated data should be
released if the init() method is called a second time, and it should be
released in the class destructor.

The execute() Method

The execute() method needs to manage its inputs and outputs, as
well as actually performing the data manipulation operation. More
explicitly, the execute() method should perform the following steps:
87

1. Request input and output data rows.

The execute() method must call CNKBufReader::setRequestRows to
request access to its input data, and call
CNKBufWriter::setRequestRows to allocate space for its output data.

It is important to note that a CNKProc cannot assume that any other
parts of the pipeline are being processed in parallel. Therefore, if
CNKBufReader::setRequestRows has been called to request access to
a certain number of rows, and these rows are not yet ready (according
to CNKBufReader::isReady()), then the execute() method must
simply return, waiting until it is called again later to see if the data is
ready. An execute method should never enter a wait loop, waiting for
some event to occur in some other part of the pipeline.

When a CNKBuf is initialized via CNKBUF::init(), the row requests for
all its readers or writers are initialized to zero, so initially
CNKBufReader::isReady() and CNKBufWriter::isReady() will always
return true (non-zero) for all of the inputs and outputs of a CNKProc.
When execute() is called the first time, with zero rows available on
its inputs and outputs, it will need to call setRequestRows to request
the appropriate number of input and output rows.

In many situations, this processing can be done by calling
CNKProc::executeRequestRows(). This utility method calls
setRequestRows on all of the inputs (requesting getNumRows() rows)
and outputs (requesting getOutputNumRows() rows). Then, it calls
isReady() on all of the inputs and outputs, to check whether the
requests are satisfied. If all of the inputs and outputs are ready,
executeRequestRows returns the minimum number of rows available
on any of the inputs or outputs. This may be less than getNumRows()
if one of the inputs has encountered an EOF. If any of the inputs or
outputs is not ready, then this method returns -1. If
executeRequestRows() returns less than zero, the execute method
should simply return, to wait for the input and output row requests to
be satisfied.

2. Process data.

The execute() method must actually perform the data processing,
reading data from its inputs with methods such as
CNKBufReader::getDouble, and writing the resulting data to its
outputs with methods such as CNKBufWriter::setDouble.
88

If the CNKProc has outputs, the execute() method may set the column
names and types of the output CNKBuf objects if they are not set
already. This can be done easily by calling
CNKBuf::setUnknownColumnInfo.

3. Release data rows.

After reading from the inputs and writing to the outputs, the
execute() method must release the input data rows that it has been
reading (by calling CNKBufReader::releaseRows), to prepare for
reading the next chunk of input data. It must also release the output
data rows it has been writing (by calling
CNKBufWriter::releaseRows), so that the output data can be read by
other components.

The execute() method does not necessarily need to release all of its
input and output rows. If an input had access to 100 rows and the
execute method released 95, the last 5 rows would be available on the
input as the first 5 rows the next time that a chunk of rows was
requested. By repeatedly releasing less than all of the input rows, the
execute method would access a rolling, overlapping window over the
input data. There is less reason for releasing less than the full set of
output rows: once an output row has been written, there is little
reason to change it.

Along with releasing the rows, the execute() method should perform
several other housekeeping chores: handling the EOF flags, calling
setDone, and calling incrementRowsDone.

If an input buf has its EOF flag set (accessed via getEOF()), this signals
the end of the input data. The execute() method has to detect and
handle this situation. Note that even if the EOF flag is set, the buf may
still contain data that the CNKProc needs to process. Only when
(inbuf->getEOF() && inbuf->getRowsReady()==0) is true has all of
the input data been released.

The execute() method has to handle the situation where the CNKProc
has processed all of its data, and it is "done". When this occurs, after
releasing all of its input and output rows, the CNKProc should call
setEOF() on all of its outputs, and then call setDone(true) to signal
that it should not be executed again.

The execute() method should also call incrementRowsDone(long
rows), to update the number of rows processed by the CNKProc
(accessed by getRowsDone()).
89

Releasing rows and performing these other tasks can often by done
by calling CNKProc::executeReleaseRows(long rows), passing the
number of rows to release. This utility method calls
releaseRows(rows) on all inputs and outputs, releasing the specified
number of rows, and calls incrementRowsDone(rows). If any of the
inputs have been totally consumed

(inbuf->getEOF() && inbuf->getRowsReady()==0)

then it is assumed that the CNKProc is done: the setEOF() method is
called on all of the outputs, and setDone(true) is called on the
CNKProc. If none of the inputs have been totally consumed,
setRequestRows(getNumRows()) is called on all of the inputs, and
setRequestRows(getOutputNumRows()) on all of the outputs, to
prepare for the next chunk.

The isReady() Method

Most of the time, it is not necessary to redefine isReady(). The
default implementation of CNKProc::isReady() returns true (non-
zero) if the CNKProc is not done (according to isDone()), and it does
not have an error (according to getError()), and all of its inputs and
outputs have their row requests satisfied (according to
CNKBufReader::isReady() and CNKBufWriter::isReady()).

It might be useful to redefine isReady() for CNKProc objects that want
to handle their inputs and outputs differently, such as running when
only one of the inputs or outputs is ready, rather than all of them. For
example, this could be used in a merge operation that handles
multiple inputs.

CNKProcCount:
Counts and
Summaries

This proc has a single input buf, and no outputs. It performs several
different types of counting operations on the input data:

1. For all input columns, it accumulates the counts of the
number of NA and non-NA values, the minimum and
maximum non-NA values that have appeared in the column,
and some additional numeric summaries.

2. For factor input columns, it maintains counts of the number of
times each factor level appears.

3. Optionally, a set of factor columns can be selected, and
crosstabs will be calculated for them, counting the number of
times each combination of factor levels appears.
90

After reading a set of input rows, the accumulated max, min, counts,
and crosstab values can be extracted from the proc.

CNKProcCount::
 CNKProcCount();
 virtual ~CNKProcCount();
 virtual void init();
 virtual void execute();

These are the constructor, destructor, and init() methods. The
execute() method is run when this CNKProc is executed within a
pipeline.

CNKProcCount::
 void setCrossSize(int val);
 int getCrossSize();
 void setCrossColumn(int crossNum, int colNum);
 int getCrossColumn(int crossNum);

Defines the set of input columns for which crosstabs will be
calculated. setCrossSize sets the number of columns for crosstabs: if
this is zero, no crosstabs will be calculated. setCrossColumn specifies
the input column to be read for each of the crosstabs. crossNum is the
crosstab column in the range 0..getCrossSize()-1. colNum gives the
column number of the specified input columns.

CNKProcCount::
 double getMin(int colNum);
 double getMax(int colNum);
 double getMean(int colNum);
 double getStdDev(int colNum);
 INT64 getCountNA(int colNum);
 INT64 getCountOK(int colNum);

After some input rows have been processed, these methods can be
used to extract information accumulated for each input column.
colNum is the number of the input column, starting from 0.

getMin and getMax return the minimum and maximum values for all
non-NA values read from the specified input column. getMean and
getStdDev return the mean and standard deviation of the specified
column. If no non-NA values have been read (or less than two values
for getStdDev), these return NaN.
91

getCountNA returns the number of NA values read. getCountOK returns
the number of non-NA values read.

CNKProcCount::
 int getColumnNumLevels(int colNum);
 const char* getColumnLevelName(int colNum,
 int levelNum);
 INT64 getColumnLevelCount(int colNum, int levelNum);
 int getColumnLevelInt(int colNum, int levelNum);

After some input rows have been processed, these methods can be
used to get the accumulated counts for each factor level of a factor
column.

getColumnNumLevels returns the number of factor levels that have
been accumulated for the given column. If it is not a factor column,
then it would return 0. This only returns the number of factor levels
that have been encountered: this may be less than the number
defined for this column, as given by CNKBuf::getNumLevels. NA
values are also accumulated as a separate level, and included in this
count, whether or not NAs appear in the data.

getColumnLevelName returns the string name associated with the
specified level number for this column. If the "level" is the special
level for NAs, this returns "NA".

getColumnLevelCount returns the number of data rows that contain
the factor level levelNum for the given column.

[## Describe getColumnLevelInt ##]

CNKProcCount::
 void setCrossIndex(int crossNum, int levelNum);
 INT64 getCrossCount();

After some input rows have been processed, these methods can be
used to get the accumulated crosstab counts. Each of these counts is
specified by a particular combination of factor levels for all of the
crosstab columns. Each count is retrieved by setting the desired
column factor level for each crosstab column (by calling
setCrossIndex), and then calling getCrossCount to retrieve a single
count.
92

setCrossIndex sets the crosstab level for the crosstab column
specified by crossNum. The level for this column is set to levelNum,
which is interpreted the same as in getColumnLevelName above. Note
that the column is specified by the crosstab column number (from 0
to getCrossSize()-1), rather than the input column number.
Therefore, levelNum should range from 0 to
getColumnNumLevels(getCrossColumn(crossNum)).

CNKProcCount::
 int getNumCountBlocks();

CNKProcCount dynamically allocates "count blocks" to store the counts
for new factor levels. The number of these blocks can grow greatly,
especially when accumulating crosstabs. This method returns the
number of count blocks in use for a given count proc.

Utility Procs When developing a proc, it is sometimes useful to have simple
components available to provide data, accept data, and print data
values. The CNKProcNullReader, CNKProcNullWriter,
CNKProcPrintf, and CNKProcRandomReader procs are utilities for use
in debugging new procs.

CNKProcNullReader : Null reader proc

The null reader proc is mainly used for testing the TIBCO Spotfire
Pipeline. It has no inputs, and one output buf. It writes 1,2,3,... on its
first column output, 2,3,4,... on the next, etc.

CNKProcNullReader::
 CNKProcNullReader();
 virtual ~CNKProcNullReader();
 virtual void init();
 virtual void execute();

These are the constructor, destructor, and init() methods. The
execute() method is run when this CNKProc is executed within a
pipeline.

CNKProcNullReader::
 void setTotalRows(INT64 rows);
 INT64 getTotalRows();
93

These methods set/get the total number of rows to be written by this
proc, before the proc sends an EOF to the output buf, and specifies that
it is done.

CNKProcNullReader::
 void setAccessBuf(int val);
 int getAccessBuf();

These methods access a flag that determines whether the proc
actually writes values to its output buf. By setting this to false (zero),
one can measure the minimum time for the pipeline to run, without
any data being transferred. In this case, the values read from the
output buf would be undefined.

CNKProcNullWriter : Null Writer Proc

The null writer proc is mainly used for testing the TIBCO Spotfire
Pipeline. It has one input buf, and no outputs. It simply consumes all
of its input rows.

CNKProcNullWriter::
 CNKProcNullWriter();
 virtual ~CNKProcNullWriter();
 virtual void init();
 virtual void execute();

These are the constructor, destructor, and init() methods. The
execute() method is run when this CNKProc is executed within a
pipeline.

CNKProcNullWriter::
 void setAccessBuf(int val);
 int getAccessBuf();

These methods access a flag that determines whether the proc
actually reads values from its input buf. By setting this to false (zero),
one can measure the minimum time for the pipeline to run, without
any data being transferred.
94

CNKProcPrintf

The CNKProcPrintf proc prints information about each block of data.
It prints the position of the block in the data, the number of rows, the
number of columns, and the data values for the first few rows in the
block. The number of rows printed can be specified, with the default
of 2.

CNKProcPrintf()::
 CNKProcPrintf();
 virtual ~CNKProcPrintf();
 virtual void init();
 virtual void execute();

These are the constructor, destructor, and init() methods. The
execute() method is run when this CNKProc is executed within a
pipeline.

 CNKProcPrintf()::
 virtual void setProperty(CNKPropertyInfo* propInfo);
 virtual void getProperty(CNKPropertyInfo* propInfo);

These methods can be used to get and set the “num.to.print”
property, which determines how many rows are printed per block.

CNKProcRandomReader : Random Data Creation Proc

This proc has a single output buf, to which it writes a specified
number of rows of random numbers, from a uniform distribution
from 0.0 to 1.0. This can be useful as a source of data for testing new
pipelines.

The number of columns to be generated is specified by outbuf. If a
column in the output buffer has the type "factor", then the values
generated for that column will be randomly chosen from the five
levels "lev1", "lev2", ..., "lev5".

CNKProcRandomReader::
 CNKProcRandomReader();
 virtual ~CNKProcRandomReader();
 virtual void init();
 virtual void execute();
95

These are the constructor, destructor, and init() methods. The
execute() method is run when this CNKProc is executed within a
pipeline.

CNKProcRandomReader::
 void setTotalRows(INT64 rows);
 INT64 getTotalRows();

These methods set/get the total number of rows to be written by this
proc, before the proc sends an EOF to the output buf, and specifies that
it is done.

CNKProcRandomReader::
 void setSeed(long seed);
 long getSeed();

These methods set/get the random seed used for initializing the
random number generator: it should be a long between 1 and
2147483646 (otherwise the seed is set to 1). If a random reader proc
is created with the same seed value and the same number of columns,
it will generate the same sequence of random numbers.

CNKPipeline :
Pipeline Object

A CNKPipeline object packages up a set of CNKProc and CNKBuf
objects so the procs can be executed to process a series of data
chunks. After a pipeline is constructed, its init() method should be
called to initialize the pipeline. This will initialize all of the bufs and
procs in the pipeline, so it is not necessary to init them explicitly.

CNKPipeline::
 CNKPipeline();
 virtual ~CNKPipeline();
 virtual void init();

These are the CNKPipeline constructor, destructor, and init()
method. A CNKPipeline is created with new CNKPipeline(), then a
number of CNKProc and CNKBuf objects are added to the pipeline, and
then init() is called to initialize it, which will initialize all of the bufs
and procs in the pipeline.

CNKPipeline::
 void addProc(CNKProc* proc);
 void removeProc(CNKProc* proc);
 int getNumProcs();
96

 CNKProc* getProc(int i);
 CNKProc* getProc(const char* name);

 void addBuf(CNKBuf* buf);
 void removeBuf(CNKBuf* buf);
 int getNumBufs();
 CNKBuf* getBuf(int i);
 CNKBuf* getBuf(const char* name);

These are methods for adding and removing CNKProc and CNKBuf
objects from a pipeline. At any point, a pipeline contains an ordered
list of CNKProc objects and an ordered list of CNKBuf objects. The
addProc, removeProc, addBuf, and removeBuf methods add or remove
a given CNKProc or CNKBuf from the corresponding list. The
getNumProcs() and getNumBufs() methods return the sizes of the two
lists. The getProc and getBuf methods allow retrieving a CNKProc or
CNKBuf by index in the list (0..N-1), or by the name of the CNKProc or
CNKBuf (according to CNKObj::getName()).

CNKPipeline::
 void execute(long max_exec);
 int getAnyProcReady();

The CNKPipeline::execute method executes the pipeline by
repeatedly calling the execute() method of CNKProc objects in the
pipeline. Before calling the CNKProc::execute method for a CNKProc,
the CNKProc's isReady and isDone methods are called to check
whether it is ready to execute. If none of the CNKProc objects are
ready to execute, then this method returns: the pipeline is done.

If the max_exec argument is 0 or less, then the pipeline is executed
until none of the CNKProc objects are ready to execute. If max_exec is
greater than 0, then the CNKPipeline::execute method will return
after calling CNKProc::execute at most max_exec times.

Every time that the CNKPipeline::execute method calls the
execute() method for a CNKProc, it also calls
CNKProc::incrementExecuteCount(), to update the count of the times
that the CNKProc has been executed.

The getAnyProcReady() method returns true (non-zero) if at least one
of the CNKProc objects in the pipeline is ready to execute.

CNKPipeline::
97

 INT64 getLastExecutionCount();
 INT64 getTotalExecutionCount();

These methods return the number of times that the pipeline has
executed a CNKProc. getLastExecutionCount() returns the number
of CNKProc-executions during the last call to CNKPipeline::execute.
getTotalExecutionCount() returns the total number of CNKProc-
executions since the pipeline was initialized with init().
98

	Important Information
	Reference
	Technical Support

	Java/C++ Extensibility
	Overview
	Extension Files
	Default Extension File Names
	Explorer IML Files
	Java Files
	C++ Library Files
	Image Files
	Help Files
	Manuals
	extension.xml Files

	Development Tools
	Java Compiler
	Java Classes

	C++ Compiler
	Include Files
	Lib Files

	Optional Tools
	Source Control
	Build System

	Architecture Features
	XML
	Pipeline
	Data Types
	Output Caches
	Node State
	Client-Server

	Infrastructure Java Classes
	XML Property Objects
	Column Meta- Data

	Graphical User Interface Classes
	Overview
	Activity Node Model
	Constructors
	General Methods
	Check Properties
	Display Dialog
	Show Viewer

	Special Interfaces
	Column Filter Generator
	PMML Generator
	Predictable Node Model

	Node Dialog
	Viewers

	Engine Classes
	Overview
	General Methods
	Constructors
	Initialization
	Output Meta Data
	CNKProc Objects
	Java Procs
	C++ Procs
	C++ Tips

	Example: Copying Inputs
	Simple Java Version
	Node Model
	Engine Node
	XML Description
	Try the Node

	Simple C++ Version
	Engine Node
	Java CNKProc
	C++ CNKProc
	XML Description

	Extended Java Version
	Node Model
	Node Dialog
	Engine Node
	XML Description

	The TIBCO Spotfire Pipeline
	Overview
	Basic Objects
	Constructing a Pipeline
	Object Initialization
	Object Name
	Error String
	Column Types
	Buf Objects

	C++ Libraries
	C++ Classes
	CNKObj: Main Parent Class
	CNKPropertyInfo
	CNKBuf, CNKBufReader, CNKBufWriter: Data Buffers
	CNKBuf Subclasses: CNKMemoryBuf and CNKBackingFileBu f
	CNKBuf Methods
	CNKBackingFileB uf Methods
	CNKBufReader Methods
	CNKBufWriter Methods
	CNKProc Methods
	Creating a Subclass of CNKProc
	CNKProcCount: Counts and Summaries
	Utility Procs
	CNKPipeline : Pipeline Object

